TABLE 1

<table>
<thead>
<tr>
<th>ϵ</th>
<th>0.1</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.44</td>
<td>0.49</td>
<td>0.60</td>
<td>0.77</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
</tr>
<tr>
<td>ρ(ε)</td>
<td>0.06</td>
<td>0.28</td>
<td>0.52</td>
<td>0.71</td>
<td>0.85</td>
<td>0.92</td>
<td>0.97</td>
</tr>
<tr>
<td>ρ(ω,ε)</td>
<td>0.16</td>
<td>0.54</td>
<td>0.92</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

In particular, for $N(m, \sigma^2)$, we have

$$
\hat{\rho}_2(\epsilon) = \frac{n-3}{2\pi(n-2)^{1/2}} \int_{\mathbb{R}^2} h(x,y) \left[\psi(x, y) \right] \left[\psi(x, y) \right]^{(n-2)/2} dx dy,
$$

where $\psi(x, y) = 1 - \left((x^2 + y^2 - (x - y)^2) / (n-2) \right)$, s is the sample variance, and Φ is the Laplace function. The estimator $f(x, y, \theta)$ for the multivariate normal distribution was obtained in [2].

LITERATURE CITED

COMPUTING THE DISTRIBUTION FUNCTION OF THE RATIO OF QUADRATIC FORMS IN NORMAL VARIABLES

T. N. Dugina and G. V. Martynov

UDC 519.2

Formulas are given for computing the ratio of quadratic forms in normal variables. The doubly noncentral F-distribution function is computed.

Consider the distribution function $F(x)$ of the ratio

$$
F(x) = \rho \left\{ \sum_{i=1}^{n} \alpha_i \chi^2_{n_i}, \delta_{i}, \epsilon_{i} \right\} / \sum_{j=1}^{m} \alpha_{2j} \chi^2_{n_{2j}}, \delta_{2j}, \epsilon_{2j}
$$

of linear combinations of independent random variables $\chi^2_{n_k}, \delta_{k}, \epsilon_{k}$, which for each k and l are distributed with n_k degrees of freedom and noncentrality parameter δ_k, ϵ_k. All $\alpha_{kl} > 0$. The random variable (1) is obtained by taking the ratio of two quadratic forms in normal variables. The distribution function $F(x)$ may be represented in the form

$$
F(x) = \rho \left\{ \sum_{i=1}^{n} \alpha_i \chi^2_{n_i}, \delta_{i}, \epsilon_{i} - \sum_{j=1}^{m} \alpha_{2j} \chi^2_{n_{2j}}, \delta_{2j}, \epsilon_{2j} \right\}
$$

Our problem is thus to find the values of the distribution function of the linear combination
\[\xi = \sum_{i=1}^{n} \alpha_{ti} \chi_{n_{i1}}^{\delta_{t1}} \delta_{t1} + \sum_{j=1}^{m} \beta_{tj} \chi_{n_{j2}}^{\delta_{tj}} \delta_{tj} \]
of \(\chi^2 \)-distributed random variables with coefficients of different signs.

Two basic approaches are available for the computation of the distribution function of such random variables: (a) by series expansion of the distribution function [4] and (b) by numerical integration of the inversion formula [1, 5]. Approach (b) is more suitable for numerical implementation and is therefore used in this paper.

The characteristic function of \(\xi \) is
\[\varphi(t) = \varphi(t, x) = \prod_{j=1}^{n} \exp \left\{ \frac{i t \delta_{tj}}{1 - 2 i \alpha_{tj} t} \right\} \left(1 - 2 i \alpha_{tj} \varphi \right)^{-n_{j1}/2} \times \prod_{j=1}^{m} \exp \left\{ \frac{i t \delta_{tj}}{1 + 2 i \alpha_{tj} \varphi} \right\} \left(1 + 2 i \alpha_{tj} \varphi \right)^{-n_{j2}/2}. \]

The inversion formula for the characteristic function is [2]
\[G(y) = \frac{1}{2} = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{4} \Im \left[\varphi(t, x) \cdot \exp \{-i t y\} \right] \, dt. \]

For our distribution function \(F(x) \), we thus have the formula
\[F(x) = G(x) = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{4} \Im \left[\varphi(t, x) \right] \, dt. \]

As in [1], each factor \(\varphi(t, x) \) for the characteristic function of a quadratic form is representable in the form \(re^{i\theta} \) as follows:

\[\exp \left\{ \frac{i t \delta_{tj}}{1 - 2 i \alpha_{tj} t} \right\} = \exp \left\{ - \frac{2 i \alpha_{tj}}{1 + 4 \alpha_{tj} t} \right\} \exp \left\{ \frac{i t \delta_{tj}}{1 + 4 \alpha_{tj} t} \right\}; \]
\[\exp \left\{ \frac{i t \delta_{tj}}{1 + 2 i \alpha_{tj} \varphi} \right\} = \exp \left\{ - \frac{2 i \alpha_{tj}}{1 + 4 \alpha_{tj} \varphi} \right\} \exp \left\{ i t \delta_{tj} \right\}; \]
\[(1 - 2 i \alpha_{tj} \varphi)^{-n_{j1}/2} = (1 + 4 \alpha_{tj} \varphi)^{-n_{j1}/4} \exp \left\{ - \frac{n_{j1}}{2} \arctan \left(2 \alpha_{tj} \varphi \right) \right\}; \]
\[(1 + 2 i \alpha_{tj} \varphi)^{-n_{j2}/2} = (1 + x^2 \alpha_{tj} \varphi)^{-n_{j2}/4} \exp \left\{ - \frac{n_{j2}}{2} \arctan \left(2 \alpha_{tj} \varphi \right) \right\}. \]

Calculating the product of the amplitudes \(r \) and summing the phases \(\theta \), we obtain after replacing \(2t \) with \(t \)
\[F(x) = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{4} \exp \left\{ - \sum_{i=1}^{n} \alpha_{t1} \delta_{t1} \frac{x_{i}}{1 + \alpha_{t1} x_{i}^{2} + \frac{1}{4} (1 + x^{2} \alpha_{t1} \delta_{t1})} \right\} \times \prod_{i=1}^{n} \left(1 + \alpha_{t1} x_{i}^{2} \right)^{-n_{i1}/4} \times \prod_{i=1}^{m} \left(1 + x^{2} \alpha_{t1} \delta_{t1} \frac{x_{i}}{1 + \alpha_{t1} x_{i}^{2} + \frac{1}{4} (1 + x^{2} \alpha_{t1} \delta_{t1})} \right) \times \sin \left(\sum_{i=1}^{n} \frac{n_{i1}}{2} \arctan \left(\alpha_{t1} \delta_{t1} \frac{x_{i}}{1 + \alpha_{t1} x_{i}^{2}} \right) + \frac{\alpha_{t1} \delta_{t1} x_{i}}{2 (1 + \alpha_{t1} x_{i}^{2})} \right) \right] \times \]