Since \(p^n(00) > 0, \ p < 1 \), and (7) holds, it remains to take
\[
p = p_3 = 1.
\]

This signifies that the iteration process in the limit leads to an asymptotically reliable Sheffer element. Q.E.D.

We formulate our main result by combining the results of Lemmas 5 and 6.

THEOREM 1. In order that an unreliable element \(E^\phi \) with two binary inputs and one binary output be a Sheffer element, it is necessary and sufficient that the following conditions be fulfilled:

1) \(\forall x (\phi (ax) = \alpha \implies p_\alpha (ax) \neq 1) \);
2) \(\exists \exists \exists \exists (p_\alpha (\bar{z}) = p_\alpha (\bar{\bar{z}}) = 1) \);
3) \(\exists \exists \exists \exists (p_\alpha (\bar{z}) = 1) \land \exists \exists (p_\alpha (\bar{\bar{z}}) = 1) \land p(\bar{z}, \bar{\bar{z}}) > 1) \);
4) \(\phi \equiv \bar{D}_\phi \).

The author thanks S. V. Yablonskii for posing the problem and for valuable advice.

LITERATURE CITED

THE INTEGRAL REPRESENTATION OF VECTOR MEASURES
ON A COMPLETELY REGULAR SPACE

O. E. Tsitritskii

We consider the vector space \(C(X, E) \) of all bounded continuous functions from a completely regular space \(X \) into a Banach space \(E \). It is given a special locally convex topology \(\xi \). We prove the analog of the Riesz–Markov theorem for the \(\xi \)-continuous linear operators which map \(C(X, E) \) into a Banach space \(F \).

Let \(T \) be a compact separable space and \(\varphi \) a continuous linear functional on the vector space of all continuous functions on \(T \) under the topology of uniform convergence. The well-known Riesz–Markov theorem states that there is a representation

\[
\varphi (f) = \int_T f \, d\mu,
\]

where \(\mu \) is a bounded regular Borel measure on \(T \). In this paper we will generalize this result in several directions. We consider continuous linear functionals on the space \(C_0(x) \)

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.
of all continuous functions on a locally compact space X which "vanish at infinity" and the space $C_b(X)$ of all continuous functions on a locally compact space X which are bounded. R. Buck [1] introduced a special locally convex topology on $C_b(X)$ which is called "strict." This topology permitted the development of a satisfactory connection between measure theory and topology. The appearance of V. S. Varadarain's paper [2] let a series of authors [3-5] apply Buck's approach to $C_b(X)$ when X is a completely regular space. On the other hand, N. Dinculeanu [6] obtained an analog to the Riesz–Markov theorem for linear operators acting on the space $K(X, E)$ (where $K(X, E)$ is the set of all continuous mappings with compact support from a locally compact space X to a Banach space E) into a Banach space F. In order to do this it turned out that a sufficiently satisfactory representation could be obtained only for so-called majorized operators and not for all continuous linear mappings in the uniform topology on $K(X, E)$.

In this note we consider $C(X, E)$, the vector space of all continuous bounded mappings of a completely regular space X into a real Banach space E. It is given a specially locally convex topology ξ. The goal of this paper is the following theorem.

THEOREM 1. Any linear operator U mapping $C(X, E)$ into a real Banach space F is continuous in the topology ξ if and only if for each $f \in C(X, E)$ there is a representation

$$U(f) = \int_X f \, dm,$$

where m is uniquely defined on U and is a regular Borel measure on X with values in the Banach space $L(E, F)$ of all continuous linear mappings of E into F having finite variation.

This will also establish a connection between ξ and the earlier mentioned "strict" topology of $C(X, E)$.

1. Throughout the paper X will be a completely regular topological space. A Borel set in X is an element of the σ-algebra $\mathcal{B}(X)$ generated by the open subsets of X. A countably additive set function which is defined on $\mathcal{B}(X)$ and which has values in a real normed space G (in $[0, +\infty]$) is said to be a (vector) Borel measure m (a positive Borel measure μ). A measure $m(u)$ is said to be regular if for any $A \subseteq \mathcal{B}(X)$ and any number $\varepsilon > 0$ there is a compact subset $K \subseteq A$ and an open subset $U \supseteq A$ such that for any $B \subseteq \mathcal{B}(X)$ with the property that $B \subseteq U \setminus K$ we have $\|m(B)\|_G < \varepsilon$ ($\|\mu(B)\| < \varepsilon$). The variation of the measure m is the real-valued set function $|m|$ defined in the following manner for any $A \subseteq \mathcal{B}(X)$:

$$|m|(A) = \sup \sum_{i \in I} |m(A_i)|,$$

where the supremum is taken with respect to all finite collections $\{A_i, i \in I\}$ of disjoint sets of $\mathcal{B}(X)$, contained in A. We say that m has finite variation if $|m|(A) < +\infty$ for any $A \subseteq \mathcal{B}(X)$. If m is a Borel measure with finite variation then $|m|$ is a finite positive regular Borel measure. In the sequel we will use results on vector measures defined on the abstract sets investigated in [6, Chaps. 1, 2].

Let βX be the Stone–Cech compactification of the space X. Let $\mathcal{B}(\beta X)$ be the σ-algebra of Borel sets in βX.

LEMMA 1. Let m be a regular Borel measure on X with values in G having finite variation. For any $A \subseteq \mathcal{B}(\beta X)$ set $\bar{m}(A) = m(A \cap X)$. Then \bar{m} is a regular Borel measure on βX with finite variation and

$$|\bar{m}|(\beta X) = \sup \{ |m|(K): K \subseteq X, K \text{ is compact} \}. \quad (2)$$

Proof. Set $v(A) = |m|(A \cap X), A \subseteq \mathcal{B}(\beta X)$. Then v is a finite positive regular Borel measure on βX satisfying (2) according to Lemma 4.3a in [3] and $\|m(A)\|_G \leq v(A)$. \bar{m} is a Borel measure on βX and m is regular in light of the regularity of v. Moreover, for any $A \subseteq \mathcal{B}(\beta X)$ we have $0 \leq |\bar{m}|(A) \leq v(A)$. From the latter inequality it follows that $|\bar{m}|$ satisfies (2).

LEMMA 2. Let n be a regular Borel measure on βX with values in G and let μ be a finite positive regular Borel measure on βX such that (2) holds for μ and

$$|n(A)|_G \leq \mu(A) \quad (A \subseteq \mathcal{B}(\beta X)). \quad (3)$$