A SUFFICIENT CONDITION FOR A POINT TO BE OF SWALLOWTAIL TYPE ON THE ENVELOPE OF A ONE-PARAMETER FAMILY OF SURFACES

V. V. Mozharskii

UDC 513

The sufficiency criterion of the title is proved. It complements the existing necessity criterion, found by Zalgaller.

We consider a family of locally simple surfaces in the space R^3 depending on the parameter φ:

$$r(u, v, \varphi) \in C^4, \quad (u, v) \in G, \quad a < \varphi < b,$$

where G is some region in the plane of the parameters (u, v). Zalgaller [Theory of Envelopes, Nauka, Moscow (1975)] has given necessary and (separately) sufficient conditions for the existence of an envelope of the family (1), as well as the presence on an envelope of a special line (edge of regression). In the same work an interesting type of singularity of the envelope is highlighted—the so-called point of swallowtail type, for which only necessary conditions are given. The present article is devoted to finding sufficiency conditions for the presence of a point of swallowtail type on the envelope of the family (1). The problem was posed to the author by Zalgaller.

We shall say that a regular curve L is an edge of regression for the surface σ if at points not on L but sufficiently close to L the surface σ has a contingency in the form of a half-plane varying continuously along L. We call the point M a point of swallowtail type for the surface σ if M is a point of regression of a curve L of the surface σ and away from M the line L is an edge of regression of σ, while at the point M the surface has a contingency in the form of a plane.

Suppose the envelope of the family (1) consists of two portions extending up to a single curve L, and L is an edge of regression of the surface σ formed by the union of these two portions and the curve L. We shall include the curve L in the envelope if to each point M of the curve L there corresponds by the law of adjunction a unique value of the parameter φ and the tangent plane of the surface of family (1) corresponding to this value of the parameter φ contains a contingency of the surface σ at the point M. Analogously we include the point M of swallowtail type in the envelope if by the law of adjunction there corresponds to this point a unique value of the parameter φ and the tangent plane of the corresponding surface of the family (1) coincides with the contingency of the surface σ at M.

We introduce the following notation:

\[f = \left(r_u r_v r_{\varphi} \right), \quad g = \begin{vmatrix} f_u & f_v & f_{\varphi} \\ r_u & r_v & r_{\varphi} \\ r_{r_u} & r_{r_v} & r_{r_{\varphi}} \end{vmatrix}, \quad h = \begin{vmatrix} g_u & g_v & g_{\varphi} \\ r_u & r_v & r_{\varphi} \\ r_{r_u} & r_{r_v} & r_{r_{\varphi}} \end{vmatrix}, \]

\[p = \frac{f_u f_v}{g_u g_v} = \frac{D(f, g)}{D(u, v)}, \quad g = \begin{vmatrix} h_u & h_v & h_{\varphi} \\ f_u & f_v & f_{\varphi} \\ g_u & g_v & g_{\varphi} \end{vmatrix} = \frac{D(h, f, g)}{D(u, v, \varphi)}, \]

\[W = \begin{vmatrix} r_u^2 & r_u r_v & r_v^2 \\ r_u & r_v & r_{r_u} \\ r_{r_u} & r_{r_v} & r_{r_{r_u}} \end{vmatrix} = \left(r_u \times r_v \right)^2, \quad \alpha = \frac{1}{W} \begin{vmatrix} r_u r_{\varphi} & r_u r_v & r_v r_{\varphi} \\ r_u & r_v & r_{r_u} \\ r_{r_u} & r_{r_v} & r_{r_{r_u}} \end{vmatrix}, \quad \beta = \frac{1}{W} \begin{vmatrix} r_u^2 & r_u r_v & r_v^2 \\ r_u & r_v & r_{r_u} \\ r_{r_u} & r_{r_v} & r_{r_{r_u}} \end{vmatrix}. \]

It is easy to verify the following relations by direct computation.

\[f_{\varphi} - \alpha f_u - \beta f_v = g W^{-1}, \]

\[g_{\varphi} - \alpha g_u - \beta g_v = h W^{-1}. \]
By differentiating (2) on φ, u, and v, and forming the expression $g_\varphi - \alpha g_u - \beta g_v$, we find

$$f_{\varphi\varphi} - 2\alpha f_{u\varphi} - 2\beta f_{v\varphi} + \alpha^2 f_{uu} + 2\alpha\beta f_{uv} + \beta^2 f_{vv} = hW^{-2} - gW^{-2}(W_\varphi - \alpha W_u - \beta W_v) + f_u(\alpha_\varphi - \alpha\alpha_u - \beta\alpha_v) + f_v(\beta_\varphi - \alpha\beta_u - \beta\beta_v).$$

(4)

THEOREM 1. Suppose at the point $M(u_0, v_0, \varphi_0)$ ($u_0, v_0 \in G$, $a < \varphi_0 < b$) for the family of surfaces (1) the following conditions hold: $f = 0$, $g = 0$, $h = 0$, and

$$r_u \times r_v \neq 0, \quad p \neq 0, \quad q \neq 0.$$

(5)

Then if the region of variation of the parameters in the family (1) is restricted to some neighborhood $(u, v) \in G$, $a_0 < \varphi < b_0$ of the point M, the family (1) has an envelope for which M is a point of swallowtail type.

PROOF: From the second condition of (5) it follows that $|f_u| + |f_v| \neq 0$. For definiteness assume

$$f_v \neq 0$$

at the point M. Then by continuity this inequality holds also in some neighborhood of the point M. Consequently the equation $f(u, v, \varphi) = 0$ has a unique solution near M with respect to v in the form of a function of class C^3: $v = v(u, \varphi) \in C^3$, and

$$v_u = -f_u f_v^{-1}, \quad v_\varphi = -f_\varphi f_v^{-1}.$$

(7)

Since $p \neq 0$, the system $f(u, v, \varphi) = 0$, $g(u, v, \varphi) = 0$ admits a solution with respect to u and v near M:

$$u = U(\varphi), \quad v = V(\varphi) \quad (\in C^3).$$

(8)

Moreover

$$U_\varphi = p^{-1} \frac{D(f, g)}{D(v, \varphi)}, \quad V_\varphi = p^{-1} \frac{D(f, g)}{D(\varphi, u)}.$$

(9)

Thus the set of points of the neighborhood of M at which the equalities $f = g = 0$ hold simultaneously is some line (8). Consequently there exist points $M_1(u_1, v_1, \varphi_1)$ in this neighborhood at which $f = 0$ and $g \neq 0$ (the set of such points obviously depends on two parameters). But this means that at such points M_1 all the hypotheses of Theorem 6.11 of the book of Zalgaller mentioned above are met, and the surface $r_\varphi(u, \varphi) = r(u, v(u, \varphi), \varphi)$ is an envelope of the family (1) with $r_u \times r_v \neq 0$ in M_1 and the law of adjunction has the form

$$u, v(u, \varphi), \varphi \quad (\in C^3).$$

(10)

It follows from the equality $f = 0$ that the vectors r_u, r_v, r_φ are coplanar on the envelope of the surface and since the first of Eqs. (5) holds, we have $r_\varphi = a_1 r_u + a_2 r_v$. Substituting this equality in the expression for α and β, we verify that $a_1 = \alpha$, $a_2 = \beta$, and

$$r_\varphi = \alpha r_u + \beta r_v.$$

(11)

We now consider the line (8) on which $f = g = 0$ (we denote this line by L). It follows from (2) and the first equation of (5) that on this line

$$f_\varphi = \alpha f_u + \beta f_v,$$

(12)

from which we find that $r_u \times r_v = 0$ on L. We shall show that L is an edge of regression of the envelope and the point M is a point of swallowtail type.

We replace f_φ and g_φ in (9) by their expressions (12) and (3):

$$U_\varphi = -\alpha + f_u h(pW)^{-1} \quad \text{and} \quad V_\varphi = -\beta - f_u h(pW)^{-1}.$$

(13)