The following theorem is proved: if for all \(x \in \mathbb{Z}^n \) (\(x \neq 0 \)) one has \(|F(x)| \geq \mu > 0 \), where \(F(x) \) is a decomposable form of degree \(n \) of \(n \) variables, then, for \(n \geq 3 \), \(F(x) \) is proportional to an integral form.

1. Formulation of Results, Notations, and Definitions

1°. THEOREM A. Assume that there is given a form \(F(x) = f_1(x) \cdots f_n(x) \), where \(f_1, \ldots, f_n \) are linear real forms of \(n \) variables (\(n \geq 3 \)). If for all \(x \in \mathbb{Z}^n \) (\(x \neq 0 \)) we have \(|F(x)| \geq \mu > 0 \), then \(F(x) \) is proportional to an integral form.

From this theorem (see [1], [2]) there follows THEOREM B (Littlewood’s problem).

\[
\lim_{m \to \infty} m \left| \sin m \pi \alpha \cdot \sin m \pi \beta \right| = 0, \quad (m=1,2,\ldots) \text{ for } \alpha, \beta \in \mathbb{R}.
\]

2°. Notations and Definitions.

The elements of \(\mathbb{R}^n \) will be called points or vectors. By \(N(X) \) we denote the quantity \(|x_1 \cdots x_n| \), where \(x_1, \ldots, x_n \) are the coordinates of the point \(X \in \mathbb{R}^n \). The quantity \(N(\Lambda) = \inf \{ N(Y) : Y \in \Lambda, (Y \neq 0) \} \) will be called the normed minimum of the lattice \(\Lambda \subset \mathbb{R}^n \). Two lattices \(\Lambda, \Lambda' \subset \mathbb{R}^n \) will be said to be similar, written \(\Lambda \sim \Lambda' \), if \(\Lambda' = \mathcal{A} \Lambda \) for some diagonal matrix \(\mathcal{A} \).

A lattice \(\Lambda \subset \mathbb{R}^n \) will be said to be algebraic or an \(a \)-lattice if it is similar to the lattice of the complete module of a purely real algebraic field of degree \(n \); otherwise, the lattice \(\Lambda \) will be called a \(b \)-lattice.

By \(D \) we denote the full collection of diagonal unimodular matrices with positive elements. By \(G, \Gamma \) we denote the groups \(SL(n, \mathbb{R}), SL(n, \mathbb{Z}) \), respectively.

By \(G(\Lambda) \) we denote the stabilizer of \(\Lambda \).

In all the subsequent presentation (unless otherwise specified), we consider unimodular lattices such that \(\Lambda : \mathbb{Z}^n \) and \(d(\Lambda) = |\det A| \).

The space of unimodular lattices will be identified in the natural manner with \(G/\Gamma \).

3°. Mahler’s compactness criterion allows us to formulate Theorem A and Theorem B in terms of lattices.

THEOREM A’. If the orbit \(D \Lambda (\Lambda \subset \mathbb{R}^n, \mu > 0) \) is relatively compact in \(G/\Gamma \), then \(\Lambda \) is an \(a \)-lattice.

THEOREM B’. If \(\alpha, \beta \in \mathbb{R} \), then for a preassigned \(\varepsilon > 0 \) there exist integers \(p_1, p_2, q \neq 0 \) such that \(|q(p_1 + q_1 \alpha - p_2 q_2 \beta)| < \varepsilon \).

In this note we present the proof of Theorem A’. At the conclusion we present the proof of Theorem B”, from which (as a special case) we obtain the solution of the Littlewood problem.

2. Continuous Sets

1°. Orbits of Lattices.

LEMMA 1. Assume that there is given a subgroup \(D \subseteq \mathbb{Z} \); if the orbit of \(\Lambda \) is relatively compact in \(G/T \), then for any \(\lambda \in \mathbb{Z}^{n} \) we have:

(i) \(N(\lambda) > N(\Lambda) = \mu > 0 \),

(ii) \(\mathbb{Z}^{n} \in \mathbb{Z}^{n} \),

(iii) if \(n \geq 3 \) and \(\Lambda \) is a b-lattice, then \(\Lambda' \) is a b-lattice.

Proof. (i) and (ii) are obvious. (iii) In the case \(\Lambda = \Lambda' \), statement (iii) is obvious. We assume that \(\Lambda' \) is a b-lattice. Since the orbit DA is dense in \(\mathbb{Z}^{n} \), for a given \(\epsilon > 0 \) there exists \(\lambda \in \mathbb{Z}^{n} \) such that \(||A_{\lambda} - \lambda|| < \epsilon \). Since \(N(\lambda') = N(\lambda) \), by the isolation theorem (see [3]) we obtain \(N(\lambda') < N(\lambda) \), contradicting statement (i). Lemma 1 is proved.

Remark. For \(n = 2 \), statement (iii) is not always true. For example, set \(\Lambda = \mathbb{Z}^{2} \), where \(\Lambda = \{ x + y \mid x, y, x, y \in \mathbb{Z} \} \). Then (i), (ii) are satisfied but (iii) does not hold since \(\mathbb{Z}^{n} \) is not a b-lattice. For each indicated \(\lambda \). We shall assume that \(\Lambda \) is a b-lattice.

2. Cycles of Lattices.

Let DA be as in Lemma 1. If for \(\Lambda \in \mathbb{Z}^{n} \) we have the equality \(\mathbb{Z}^{n} = \mathbb{Z}^{n} \) for all \(\Lambda \in \mathbb{Z}^{n} \), then the set \(\mathbb{Z}^{n} \) will be called a cycle and we write \(\{ \mathbb{Z}^{n} \} \).

LEMMA 2. The set \(\mathbb{Z}^{n} \) contains \(\Lambda_{0} \) such that \(\mathbb{Z}^{n} \subseteq \mathbb{Z}^{n} \).

Proof. From Lemma 1(ii) for \(\Lambda \in \mathbb{Z}^{n} \) there follows the inclusion \(\mathbb{Z}^{n} \subseteq \mathbb{Z}^{n} \). If for all \(\Lambda \) from \(\mathbb{Z}^{n} \) we have \(\mathbb{Z}^{n} = \mathbb{Z}^{n} \), then \(\mathbb{Z}^{n} = \mathbb{Z}^{n} \) and the lemma is proved. Assume that for some \(\Lambda \in \mathbb{Z}^{n} \) we have the strict inclusion \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \). Carrying out a similar argument for the set \(\mathbb{Z}^{n} \), we obtain the strict inclusion \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \). At the i-th step we shall obtain the strict inclusion \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \). If the number of such steps is finite, then the lemma is proved. Otherwise, we shall have an infinite sequence of strict inclusions: \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \), \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \), ..., \(\mathbb{Z}^{n} \neq \mathbb{Z}^{n} \). Let \(\Lambda_{0} \) be one of the limit points of the infinite sequence \(\Lambda_{0}, \Lambda_{1}, ..., \Lambda_{n-1} \), \(\Lambda_{n} \). We have \(\mathbb{Z}^{n} = \mathbb{Z}^{n} \). Lemma 2 is proved.

For the sake of convenience (if this does not lead to confusion) the cycles \(\{ \mathbb{Z}^{n} \} \) will be denoted by \(\{ D \} \).

3. Discrete Sets

The Fundamental Properties of the Lattice \(\Lambda \subseteq \mathbb{R}^{n} \) for \(N(\Lambda) = \mu > 0 \).

LEMMA 3. If the lattice \(\Lambda \subseteq \mathbb{R}^{n} \) we have \(N(\Lambda) = \mu > 0 \), then for reciprocal lattice \(\Lambda^{*} \) we have \(N(\Lambda^{*}) = \mu^{*} > 0 \).

Proof. We assume that \(N(\Lambda^{*}) = 0 \). Then for a preassigned \(\epsilon > 0 \), one can find \(Y_{\epsilon} \in \Lambda^{*} \) such that \(N(Y_{\epsilon}) < \epsilon \). From here we obtain the existence of \(Y_{\epsilon} \in \Lambda_{n-1} \subseteq \mathbb{R}^{n-1} \) of length \(\epsilon = \rho \), \(\rho = 1 \), which is not possible. (Here \(\rho_{n-1} \) is the volume of the \((n-1) \)-dimensional ball with radius equal to 1.) Lemma 3 is proved.

COROLLARY 1. If lattice \(\Lambda \) is from Lemma 3, \(\Lambda \) is a matrix basis of \(\Lambda \) (so that \(\Lambda = \Lambda^{*}^{T} \)), then \(\Lambda^{*} \) is a matrix basis of \(\Lambda^{*} \) and, therefore, all the elements of the matrix \(\Lambda^{-1} \) are different from zero.

COROLLARY 2. Let \(Y_{1}, ..., Y_{n-1} \) be \(n-1 \) linearly independent vectors from \(\Lambda \). We consider the plane \(\Delta_{n-2} : \{ \alpha_{1} Y_{1} + ... + \alpha_{n-1} Y_{n-1} \mid \alpha_{1} + ... + \alpha_{n-1} = 1 \} \) and the point \((p_{1}, ..., p_{n-1}, q_{n}) \in \Delta_{n-2} \). The point \((p_{1}, ..., p_{n-1}, q_{n}) \) lies in \(\Delta_{n-2} \) if and only if \(p = q = 1 \). It follows from Corollary 1.

By \(p(a_{1}, ..., a_{n}) \) we denote the set \(\{ \alpha_{1} Y_{1} + ... + \alpha_{n-1} Y_{n-1} \mid 0 < \alpha_{1}, ..., \alpha_{n-1} < 1 \} \) and its volume.

LEMMA 4. There exist constants \(v_{0}, v_{1} \) such that: (i) \(\Lambda \cap p = \varnothing \) for \(v_{0} > \lim_{i} a_{i} \); (ii) \(\Lambda \cap p = \varnothing \) for \(v_{1} > \lim_{i} a_{i} \), and \(v_{0}, v_{1} \) depend only on \(\mu = N(\Lambda) \).

Proof. Since for any \(\{ D \} \) in the lattice \(\mathbb{Z}^{n} \), the length of any vector (except 0) is at least \(\mu^{\text{th}} \sqrt{n} \), it follows that (i) is satisfied for \(v_{0} = \mu \). For the proof of (ii) we consider the cylinder:

\[\{ x \in \mathbb{R}^{n} \mid \langle x, x \rangle - \frac{1}{\mu^{\text{th}} \sqrt{n}} (\sum_{i=1}^{n} x_{i})^{2} < 0 \} \]

of volume \(V(\mu, h) = \mu^{\text{th}} \sqrt{n} - \frac{1}{\mu^{\text{th}} \sqrt{n}} \cdot (1 + \frac{n-1}{2}) \cdot h \), for \(0 < h \leq \mu^{\text{th}} \sqrt{n} - \frac{1}{\mu^{\text{th}} \sqrt{n}} \) and also \(h \), such that \(V(\mu, h) = m \cdot \mu^{\text{th}} \). Then (Minkowski's theorem) \(C(r, h) \) will contain at least \(m \) points of \(\Lambda \). All these points are from the first orthant.