i.e., one integrates with respect to \(y \) in the expressions for \(\tilde{k}_t(0) \) and \(\tilde{k}_q(0) \) easily, and the rest of the calculations are analogous to those given above.

LITERATURE CITED

SOLVABILITY OF THE BASIC INITIAL-BOUNDARY PROBLEM FOR THE EQUATIONS OF MOTION OF AN OLDROYD FLUID ON \((0, \infty)\) AND THE BEHAVIOR OF ITS SOLUTIONS AS \(t \to +\infty \)

A. A. Kotsiolis and A. P. Oskolkov

The solvability in the large on \((0, \infty)\) of the first initial-boundary problem for the equations of motion of an Oldroyd fluid with two spatial variables is proved and the connection as \(t \to \infty \) of the solutions of this problem with the solution of the analogous problem for the Navier--Stokes equation is investigated.

1. By an Oldroyd fluid (more precisely, an Oldroyd fluid of order \(L = 1 \)) is meant a linear viscoelastic fluid whose defining equation connecting the deviator of stress \(\sigma \) and the rate of deformation tensor \(D \), has the form \([1-2]\):

\[
\sigma + \lambda \frac{\partial \sigma}{\partial t} = 2\eta \partial \sigma + 2\eta \frac{\partial D}{\partial t}, \quad \lambda, \nu, \chi > 0, \quad \nu - \chi \lambda^{-1} > 0.
\]

(1)

It is shown in the papers of Oskolkov \([3-7]\) that the motion of an Oldroyd fluid can be described by the system of differential equations

\[
\begin{align*}
L(v) &= \frac{\partial \nu}{\partial t} + \nu \frac{\partial \sigma}{\partial x} - \mu \Delta v - \Delta u + \nu \Delta \Delta \nu + \nu \Delta u - \gamma \Delta \partial u + \nu \Delta \partial u + \gamma \Lambda \lambda^{-1} v, \\
\mu &= \chi \lambda^{-1}, \quad \sigma = \lambda(v - \mu)^{-1}, \quad \beta = (v - \mu)^{-1}.
\end{align*}
\]

(2)

The basic initial-boundary problem for (2) is the solution of (2) in \(Q_T = \Omega \times (0, T), \Omega \in \mathbb{R}^n, \nu = 2, 3, 0 < T < \infty \), subject to the initial-boundary conditions

\[
\begin{align*}
v(x, 0) &= v_0(x), \quad u(x, 0) = 0, \quad x \in \Omega; \quad v|_{\partial \Omega_T} = u|_{\partial \Omega_T} = 0.
\end{align*}
\]

(3)

The unique classical solvability of the initial-boundary problem (2)-(3) in the large \(\forall T < \infty \) is proved in the papers of Oskolkov \([3-7]\), if \(\Omega \) is a two-dimensional bounded domain, and in the small if \(\Omega \in \mathbb{R}^3 \). In the present paper we prove the unique classical solvability of the initial-boundary problem (2), (3) for \(\Omega \in \mathbb{R}^3 \) in the large on \((0, \infty)\), and we prove that under certain conditions on the data of the problem the solution of the problem (2), (3)
tends, as $t \to +\infty$, to a solution v^* of the initial-boundary problem for the Navier–Stokes equation

$$
\frac{\partial v^*}{\partial t} + \nabla p^* + \nu \Delta v^* + \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u} \cdot \nabla v^* = 0; \quad \frac{\partial p^*}{\partial t} = \nu \Delta v^*; \quad v^*|_{t=0} = v_0(x), \quad \frac{\partial v^*}{\partial n}|_{\partial Q} = 0. \tag{4}
$$

2. THEOREM 1. Let the following conditions hold: Ω is a two-dimensional bounded domain; $\partial \Omega \in C^2$; $v_0(x) \in C^2(\partial \Omega) \cap L^2(\Omega)$; $\mathbf{u}_0(x) \in L^2(\Omega)$; $\mathbf{u}_0 \in L^2(Q_T)$; $\mathbf{u}_0 \in L^2(\Omega_T)$; $\mathbf{u}_0 \in L^2(\Omega_T)$. Then the initial-boundary problem (2), (3) has a unique solution (v, u, p) such that

$$
\begin{align*}
&v(x, t) \in W^{1,2}(\Omega_T; C^0(\partial \Omega); C^0(\partial \Omega)) \cap L^2(\Omega_T), \\
&u(x, t) \in W^{1,2}(\Omega_T; C^0(\partial \Omega); C^0(\partial \Omega)) \cap L^2(\Omega_T), \\
&\mathbf{u}_0 \in L^2(\Omega_T; C^0(\partial \Omega)), \\
&\mathbf{u}_0 \in L^2(\Omega_T, C^0(\partial \Omega)), \\
&p(x, t) \in L^2(\Omega_T; C^0(\partial \Omega)), \\
&\mathbf{u}_0 \in L^2(\Omega_T; C^0(\partial \Omega)),
\end{align*}
$$

and for it one has the estimate

$$
\begin{align*}
\|v\|_{W^{1,2}(\Omega_T)} + \|u\|_{W^{1,2}(\Omega_T; C^0(\partial \Omega))} &+ \frac{\partial u}{\partial n}\bigg|_{\partial \Omega_T} + \frac{\partial \mathbf{u}}{\partial n}\bigg|_{\partial \Omega_T} + \frac{\partial \mathbf{u}}{\partial n}\bigg|_{\partial \Omega_T} + \\
&+ \|p\|_{L^2(\Omega_T; C^0(\partial \Omega))} \leq \mu(t) \|v_0\|_{L^2(\Omega_T; C^0(\partial \Omega))},
\end{align*}
$$

where the constant $\mu(t)$ does not depend explicitly on T, $0 < T < \infty$.

As in the proof of the solvability of the initial-boundary problem for the two-dimensional Navier–Stokes system [8], to prove Theorem 1 it suffices to get the following estimates for solutions of the problem (2), (3), uniformly with respect to $0 < T < \infty$:

$$
\frac{1}{\nu} \max_{[0, T]} \left(\|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \right) \leq A T, \tag{6}
$$

$$
\max_{[0, T]} \left(\|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \right) \leq \left(\|v_0\|_{L^2(\Omega_T; C^0(\partial \Omega))} + \|f\|_{L^2(\Omega_T; C^0(\partial \Omega))} \right) \exp \left(A T^2 \right). \tag{7}
$$

$$
\frac{1}{\nu} \|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \leq \left(\|v_0\|_{L^2(\Omega_T; C^0(\partial \Omega))} + \|f\|_{L^2(\Omega_T; C^0(\partial \Omega))} \right) \exp \left(A T^2 \right). \tag{8}
$$

With the help of (6)-(8) one can prove, by the method of Galerkin (cf. [8, 3-6]), that the problem (2), (3) has a unique generalized solution (v, u) in the sense of Ladyzhenskaya [8, 3-6], and after this, with the help of the imbedding theorems of S. L. Sobolev and the theorems of the classical solvability of the corresponding linearized problem [3-6] one proves Theorem 1 in its full extent.

One gets (6)-(8) from the equations

$$
\frac{1}{\nu} \frac{d}{dt} \left(\|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \right) + \mu \|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \frac{\partial u}{\partial n}\bigg|_{\partial \Omega_T} = 0, \tag{9}
$$

$$
\frac{1}{\nu} \frac{d}{dt} \left(\|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \right) + \frac{\partial u}{\partial n}\bigg|_{\partial \Omega_T} + \int_\Omega v \partial_x v \, dx - \int_\Omega v \partial_x v \, dx = 0, \tag{10}
$$

which, in turn, one gets, respectively, from the equations

$$
\int_\Omega \partial_t v \cdot v \, dx = \int_\Omega v \partial_t v \, dx + \int_\Omega \partial_x \partial_x v \cdot v \, dx, \quad 0 < t < T. \tag{11}
$$

In fact, from (9) we have first of all, the inequality:

$$
\frac{1}{\nu} \frac{d}{dt} \left(\|v\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 + \|u\|_{L^2(\Omega_T; C^0(\partial \Omega))}^2 \right) \leq A T, \tag{12}
$$

from which the next inequality follows: