THE RATIONAL APPROXIMATION OF CONVEX
FUNCTIONS OF THE CLASS Lip \(\alpha \)

A. Khatamov

UDC 517.51

It is proved that if a function \(f(x) \) is convex on \([a, b]\) and \(f \in \text{Lip}_K(f) \alpha, 0 < \alpha < 1 \), then the least uniform deviation of this function from rational functions of degree not higher than \(n \)
does not exceed \(C(\alpha, \nu)(b - a)\nu K(f)n^{-\alpha - 1 + \nu} \ln n \) (\(\nu \) is a natural number; \(C(\alpha, \nu) \) depends only on \(\alpha \) and \(\nu \); \(K(f) \) is a Lipschitz constant; and \(n \geq n(\nu) = \min \{ n : \ln \ln n \geq 1 \} \).

INTRODUCTION

Let \(R_n[f; [a, b]] \) be the least uniform deviation of a continuous function \(f(x), x \in [a, b], -\infty < a < b < +\infty \), from rational functions of degree not higher than \(n \). Suppose that \(f(x), x \in [0, 1] \), is convex and satisfies a Lipschitz-Hölder condition of order \(\alpha > 0 \) with some constant \(K(f) \), \(f \in \text{Lip}_K(f)\alpha \), i.e., \(|f(x') - f(x)| \leq K(f)|x' - x|^\alpha \) for all \(x', x'' \in [0, 1] \). For \(R_n[f; [0, 1]] \) the following estimates are known:

(a) if \(\alpha = 1 \), then \(R_n[f; [0, 1]] \leq C_1K(f)n^{-2}\ln^3 n \) (Szép and Turán [1], pp. 495-502); \(R_n[f; [0, 1]] \leq C_2K(f)n^{-2}\ln\ln n \) (Popov [3]).

(b) for \(0 < \alpha \leq 1 \), \(R_n[f; [0, 1]] \leq C_1(\alpha)K(f)(\ln^5 n/\ln n)^{1+\alpha} \) (Abdugapparov [4]); \(R_n[f; [0, 1]] \leq C(f, \alpha)n^{-2}\ln^5 n \) (Bulanov [5]); \(R_n[f; [0, 1]] \leq C_2(\alpha)K(f)n^{-2}\ln^3 n \) (Abdugapparov [6]).

Here \(C_1, C_2, C(\nu), C_1(\alpha), C(f, \alpha), C_2(\alpha) \) do not depend on \(n \).

On the other hand, there exists a convex function of the class \(\text{Lip} 1 \), such that \(R_n[f; [0, 1]] \leq Cn^{-2} \), where \(C > 0 \) and does not depend on \(n \) (Freud [7]). Thus, the best estimate for \(R_n[f] \) in the case \(f \in \text{Lip} \alpha, 0 < \alpha < 1 \), is included between \(C_1n^{-2} \) and \(C_2n^{-2}\ln^3 - 0 \) in \(n, C_1, C_2 > 0, n = 2, 3, \ldots \).

The main result of this paper is the following theorem:

THEOREM. For each function \(f(x) \) that is convex and satisfies the condition \(\text{Lip}_K(f)\alpha, 0 < \alpha < 1 \), on some segment \([a, b], \) for any natural number \(\nu \) and for all \(n \geq n(\nu) \)

\[R_n[f; [a, b]] \leq C(\alpha, \nu)(b - a)\nu K(f)n^{-\alpha - 1 + \nu} \ln \ln n, \]

where \(n(\nu) \) is the smallest natural number \(n \) such that \(\ln \ln n \geq 1 \), and \(C(\alpha, \nu) \) depends only on \(\alpha, \nu \) and \(0 < C(\alpha, \nu) < \infty \).

First of all, note that it suffices to prove this result for functions \(f(x), x \in [0, 1] \), which are convex upward, nondecreasing, continuously differentiable, belonging to the class \(\text{Lip}_K(f)\alpha \), and equal to 0 for \(x = 0 \) and 1 for \(x = 1 \) (see [5], §1). Precisely this case will be considered. We shall prove the theorem for this case in four steps, which correspond to the four lemmas presented below.

1. LEMMA 1. Let \(0 < \alpha \leq 1; N_0 \) the smallest natural number such that \(N_0^{-2}N_0 > 288\cdot 10^9 \cdot \alpha^2 \), \(N \geq N_0 \) a natural number; \(\lambda = N^{-2/\alpha} \); and \(q \) a natural number such that

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $1.00.

1092
Suppose further that the function \(f(x) \) is convex upward, nondecreasing, continuously differentiable, and that \(f(0) = 0 \) and \(f(1) = 1 \). Then there exist a natural number \(S \), a finite increasing sequence \(\{ t_i \}_{i=0}^S \subset [0,1] \), a finite increasing sequence \(\{ \xi_k \}_{k=0}^S \subset [0,1] \) containing it, and a finite sequence of natural numbers \(\{ n_i \}_{i=0}^S \) having the following properties:

a) \(S \leq 16^{-2} \ln^{2} N \ln^{-2} N \);

b) \(0 = t_0 \leq \xi_0 \leq t_1 \leq \xi_1 \leq \cdots \leq t_{S+1} = 1 \);

c) \(\xi_i \leq t_{i+1} \leq t_i \), \(i = 0, 1, \ldots, S \);

d) \(\xi_{S+1} = \xi_0 \leq \xi_1 \leq \cdots \leq \xi_S = 1 \);

e) \(\xi_{S+1} - \xi_k \geq \frac{1}{2} \), \(k = 0, 1, \ldots, S \);

then the following two inequalities hold simultaneously:

\[
\frac{f' (\xi_{S+1}) - f' (\xi_k)}{\xi_S - \xi_k} \leq \frac{1}{v} \frac{f (t_i) - f (t_{i+1})}{t_i - t_{i+1}}.
\]

This lemma is completely analogous to an assertion of Bulanov stated and proved in [5] (pp. 480-483). The difference in the formulation is that in Lemma 1 specific values of \(m \) and \(\lambda \) are used (Bulanov imposed only the following restrictions on these parameters: \(m \geq 6 \), \(\exp (-m^2) \leq \lambda < 1 \); \(f(x) \) is used in place of \(\varphi(x) \); and conclusion d) replaced conclusion 3 of Bulanov's assertion. The proof of Lemma 1 is completely analogous to that of Bulanov's assertion; the only changes are in those calculations that arise in connection with replacing Bulanov's conclusion 3 by our conclusion d).

2. In what follows it will be convenient to use the following notation: \(L_0 (a) = a \) for \(\nu = 0 \) and any real number \(a \), and for \(\nu > 1 \) \(L_\nu (a) = \ln \cdots \ln a \), where \(a \) is a real number such that \(L_{\nu-1} (a) > 0 \). Let \(\tau \) and \(\nu \) be two nonnegative integers, \(\gamma = \max (\tau, \nu) \), and \(n(\tau, \nu) \) the smallest natural number \(n \) such that \(L_{\gamma+1} (n) > 1 \).

\[\text{LEMMA 2.} \quad \text{Suppose that } \alpha, N_0, N, f(x) \text{ and that the points } \{ t_i \}, \{ \xi_k \} \text{ satisfy Lemma 1. If } f \in \text{Lip}_K(f), \text{ then for } n = [1000 \gamma^{-2} \ln^2 N], \text{ any natural number } \nu, \text{ and all } N \geq N(\alpha, \nu), \text{ the following inequalities are simultaneously valid for all } I_k = [\xi_k, \xi_{k+1}], k = 0, 1, \ldots, S:
\]

\[
R_{\nu+1} [f; I_k] \leq C_1 (\alpha, \nu) K (f) N^{-2} \ln N \cdot L_{\gamma+1} (n),
\]

where \(N(\alpha, \nu) \) and \(C_1 (\alpha, \nu) \) depend only on \(\alpha \) and \(\nu \) and \(1 < N(\alpha, \nu), C_1 (\alpha, \nu) < \infty \).

\[\text{Proof.} \quad \text{We signify those segments } I_k, k \geq 1, \text{ for which } f (\xi_{S+1}) - f (\xi_k) \geq N^{-2} \text{ by one prime. We signify those } I_k, k \geq 1, \text{ for which } f (\xi_{S+1}) - f (\xi_k) \leq N^{-2} \text{ by two primes. The segment } I_0 \text{ will be considered separately.}
\]

\[2a) \quad \text{Let us bound } R_{\nu+1} [f; I_0'] \text{ from above. Let } \varphi (x) = f (x) - f (\xi_{S+1}), \ x \in I_0'. \text{ The function } \varphi (x) \text{ is convex upward, nondecreasing, continuously differentiable, and the total variation of } \varphi' (x) \text{ on } I_k \text{ is equal to } \varphi' (\xi_k) - \varphi' (\xi_{S+1}). \text{ We need the following theorem:}
\]

\[\text{THEOREM (Popov [3]).} \quad \text{Suppose that a function } f(x) \text{ on } [a, b] \text{ has a first derivative with finite total variation } V_\delta^b (f'). \text{ Then for each natural number } \nu \text{ there exists a finite positive number } C(\nu) > 1, \text{ depending only on } \nu \text{ (but not on } n, \nu, \text{ or } [a, b]), \text{ such that}
\]

\[
R_n [f; [a, b]] \leq C (\nu) V_\delta^b (f') (b - a) n^{-2} L_\nu (n)
\]

for any \(n \geq n(0, \nu - 1) = \min \{ n: L_\nu (n) > 1 \} \).

Applying this theorem to } \varphi(x) \text{ on } I_0', \text{ for any

\[*[a] \text{ denotes the largest integer not exceeding } a.\]