A completeness relation is derived for the set of solutions of the radial Schrödinger equation with a nuclear-Coulomb potential in the complex λ-plane for a fixed physical energy.

1. Introduction

We consider the Schrödinger equation

$$\left(\frac{d^2}{dr^2} + \frac{\lambda^2}{r^2} + \frac{1}{4} - \frac{a}{r} - V(r)\right)\psi(\lambda, \kappa, r) = 0,$$ \hspace{1cm} (1.1)

where κ takes on the physically meaningful values ($\kappa > 0$); a is a real number; and λ is complex. We choose as $V(r)$ the generalized Yukawa potential

$$V(r) = \int_{m > 0}^{\infty} \frac{\exp(-mr)}{r} d\nu, \hspace{1cm} \int_{m}^{\infty} \frac{|z(\nu)|}{\nu} d\nu < \infty.$$ \hspace{1cm} (1.2)

We find the regular solution $\psi(\lambda, \kappa, r)$ of Eq. (1.1) by means of the boundary condition

$$\lim_{r \to 0} \psi(\lambda, \kappa, r) r^{-\lambda - \frac{1}{2}} = 1.$$ \hspace{1cm} (1.3)

The Jost solutions $f(\lambda, \pm \kappa, r)$ are found by means of the boundary conditions at infinity:

$$\lim_{r \to \infty} f(\lambda, \pm \kappa, r) \exp\left(\frac{a\pi}{4\kappa} \text{sign}(\kappa)\right) \exp\left[\pm i \left(\kappa r - \frac{a}{2\kappa} \ln(2\kappa r)\right)\right] = 1.$$ \hspace{1cm} (1.4)

If there is no nuclear potential ($V = 0$), the free solutions are

$$\psi_0(\lambda, \kappa, r) = (2i\kappa)^{-\lambda - \frac{1}{2}} M_{\frac{\lambda}{2\kappa}}(2\kappa r); \hspace{1cm} f_0(\lambda, \pm \kappa, r) = W_{\frac{\lambda}{2\kappa}, \lambda}(\pm 2\kappa r),$$ \hspace{1cm} (1.5)

where $M_{\frac{\lambda}{2\kappa}, \lambda}$ and $W_{\frac{\lambda}{2\kappa}, \lambda}$ are Whittaker functions.

Equation (1.1) has the four solutions $\psi(\pm \lambda, \kappa, r)$, $f(\lambda, \pm \kappa, r)$. Using boundary conditions (1.3) and (1.4), we can easily find the Wronskians:

$$W[\psi(\lambda, \kappa, r), \psi(-\lambda, \kappa, r)] = -2\lambda;$$

$$W[f(\lambda, \kappa, r), f(\lambda, -\kappa, r)] = 2i\kappa \exp\left(-\frac{a\pi}{2\kappa} \text{sign}(\kappa)\right).$$ \hspace{1cm} (1.6)

© 1977 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $15.00.
The Jost function $f(\lambda, -\kappa)$ is given by

$$f(\lambda, -\kappa) = \mathcal{W}[f(\lambda, -\kappa, r), \varphi(\lambda, \kappa, r)]. \quad (1.7)$$

As in [1], we use (1.6) and (1.7) to find the following relations ($\kappa > 0$):

$$f(\lambda, -\kappa, r) = \frac{1}{2\kappa} [f(\lambda, -\kappa) \varphi(-\lambda, \kappa, r) - f(-\lambda, -\kappa) \varphi(\lambda, \kappa, r)]; \quad (1.8)$$

$$\varphi(\lambda, \kappa, r) = \frac{e^{2\alpha}}{2\kappa^2} [f(\lambda, \kappa) f(\lambda, -\kappa, r) - f(\lambda, -\kappa) f(\lambda, \kappa, r)]. \quad (1.9)$$

It follows from (1.8) that $f(\lambda, -\kappa, r)$ is an even function with respect to λ.

The results of [2] show that $f(\lambda, -\kappa)$ is a holomorphic function in the region $\text{Re} \lambda > 0$.

In the case of a Coulomb potential, we have the following for Jost function $f_0(\lambda, -\kappa)$ [3]:

$$f_0(\lambda, -\kappa) = \frac{(2i\kappa)^{-\lambda+\frac{1}{2}}}{\Gamma(\lambda + \frac{1}{2})} \frac{\Gamma(2\kappa + 1)}{\Gamma\left(\frac{1}{2} + \frac{4\alpha}{2\kappa}\right)} . \quad (1.10)$$

Below we will need the asymptotic forms of the functions $f(\lambda, -\kappa)$ and $\varphi(\lambda, \kappa, r)$ for large λ. It was shown in [4] that under condition (1.2) the Jost functions for a nuclear-Coulomb potential behave at large λ in the region $\text{Re} \lambda > 0$ like the Jost functions for a Coulomb potential, so we can write

$$f(\lambda, -\kappa) \sim f_0(\lambda, -\kappa) (2\pi \kappa)^{-\lambda+\frac{1}{2}} \frac{1}{2} \frac{2^{4\alpha/2\kappa}}{\Gamma\left(\frac{1}{2} + \frac{4\alpha}{2\kappa}\right)}, \quad (|\lambda| \to \infty). \quad (1.11)$$

From Eqs. (2.9) and (2.10) [4] we find two different expressions (corresponding to contours Γ_0 and Γ_1) for $\varphi(\lambda, \kappa, z)$:

$$\varphi(\lambda, \kappa, z) = \exp\left(4i\kappa\right) B_0 p_0 \frac{1}{2i} \int \frac{d \tilde{z}}{0, \Gamma_0} \frac{1}{2i} \int \exp(2i\tilde{z}) I(\tilde{z}) Y_0(\tilde{z}) \, d\tilde{z};$$

$$\varphi(\lambda, \kappa, z) = \exp\left(-4i\kappa\right) B_0 p_0 \frac{1}{2i} \int \frac{d \tilde{z}}{0, \Gamma_1} \frac{1}{2i} \int \exp(-2i\tilde{z}) I(\tilde{z}) Y_0(\tilde{z}) \, d\tilde{z}. \quad (1.12)$$

Equations (2.1a), (2.2), and (2.3) of [4] yield the following for large λ:

$$\xi_0(z) \sim \xi_{0,e}(z) \sim -\bar{\mu} - \frac{a}{2\kappa} \ln(2\kappa) + \frac{ia\pi}{4\kappa} - \bar{\mu} \ln z - \bar{\mu} \ln\left(\frac{\kappa}{2\kappa}\right) + \frac{\pi}{2} \lambda; \quad (1.13)$$

$$\xi_1(z) \sim \xi_{1,h}(z) \sim -\bar{\mu} - \frac{a}{2\kappa} \ln(2\kappa) + \frac{ia\pi}{4\kappa} + \bar{\mu} \ln z + \bar{\mu} \ln\left(\frac{\kappa}{2\kappa}\right) + \frac{\pi}{2} \lambda.$$ Here a plus sign is used with the root for contours Γ_0, and a minus sign is used for Γ_1 [4].

Substituting (1.13) into (1.12), and using the values of $B_0, B_1, p_0,$ and p_1 for large λ (see Eqs. (2.2), (2.3), (2.11), and (2.3) in [4]), we find that the asymptotic form of the regular particular solution $\varphi(\lambda, \kappa, r)$ which satisfies boundary condition (1.5) of [4] does not depend on the nature of contours Γ_0 and Γ_1 and is given by

$$\varphi(\lambda, \kappa, z) \sim \frac{\Gamma\left(\lambda + \frac{1}{2} + \frac{4\alpha}{2\kappa}\right)}{\Gamma(2\kappa + 1)} (-2i\kappa)^{\lambda+\frac{1}{2}}, \quad (|\lambda| \to \infty). \quad (1.14)$$

1213