SELF-INJECTIVE RINGS AND ENDOmorphisms
OF FREE MODULES

V. I. Gemintern
UDC 512.4

It is shown that the ring of endomorphisms of an arbitrary free R-module is right self-injective if and only if R is quasi-Frobenius.

It is well known (see [2], [4]), that the ring R_n of matrices over a ring R is left self-injective if and only if R is left self-injective. The matrix ring can be thought of as the ring End_RF of endomorphisms of a free left R-module F with a finite basis. If we write homomorphisms to the left of elements, then the endomorphism ring End_RF is right self-injective if and only if R_n is left self-injective. We consider the following question: When is the endomorphism ring End_RF of a free left R-module F on an infinite set of cardinality ω right self-injective? The ring End_RF is anti-isomorphic with the ring R_ω of row-finite matrices of size ω. Thus it suffices to show that the ring R_ω is left self-injective. Our main result (Theorem 4) says that the ring R_ω is left self-injective if and only if the left R-module F is injective. Then with the aid of [3] it follows (Theorem 5) that the ring of endomorphisms of an arbitrary free left R-module is right self-injective if and only if the ring R is quasi-Frobenius.

In the category R_ω of left R-modules we define functors, taking values in the category R_ω of left modules over the ring R_ω of all row-finite matrices of size ω ([5], p. 35) with entries from the ring R.

1°. Each R-module A determines a corresponding module \tilde{A}_ω, whose additive group is the direct sum of ω copies of the Abelian group $(A, +)$ and in which multiplication by an element $\lambda = (\lambda_{\alpha\beta}) \in R$ is given by the formula

$$\lambda a = (\sum_\alpha \lambda_{\alpha 1} a_1, \sum_\beta \lambda_{\alpha 2} a_2, \ldots, \sum_\gamma \lambda_{\alpha\omega} a_\omega, \ldots),$$

(1)

Each R-homomorphism $\varphi : A \rightarrow B$ determines a homomorphism $\tilde{\varphi}_\omega$ by the formula

$$\tilde{\varphi}_\omega(a) = (\varphi(a_1), \varphi(a_2), \ldots, \varphi(a_\omega), \ldots).$$

(2)

It is easy to check that $\tilde{\varphi}$ is an R_ω-homomorphism. Each of these functors can be defined from the category \mathbb{M}_R of right R-modules into the category of right R_ω-modules \mathbb{M}_{R_ω}.

2°. Each R-module A determines a corresponding module \tilde{A}_ω, whose additive group is isomorphic to the direct product of ω copies of the group $(A, +)$, with multiplication by elements from R_ω given by Eq. (1) and for homomorphisms $\varphi : A \rightarrow B$ of left R-modules, the mappings $\varphi^\omega(a)$ are defined by the equation

$$\varphi^\omega(a) = (\varphi(a_1), \varphi(a_2), \ldots, \varphi(a_\omega), \ldots)$$

(2')

Let $\psi : R \rightarrow R_\omega$ assign to an arbitrary element r of the ring R the matrix $\psi(r) \in R_\omega$, having all diagonal entries equal to r and all other entries zero. If A is an arbitrary left R_ω-module, it may be considered as an R-module, setting $ra = \psi(r)a$ for arbitrary $a \in A$.
LEMMA 1. If the left R-module A is projective, the left R^ω-module A^ω is also projective. If the right R-module B is projective, the right R^ω-module B^ω is also projective.

Proof. The left R^ω-module R^ω is a direct summand of the free R^ω-module R^ω. A projective R-module A is a direct summand of a free module, hence $\Sigma^\alpha R \cong A \oplus A'$ for some left R-module A'. Therefore $\Sigma^\alpha (R^\omega) \cong A^\omega \oplus A'^\omega$ and A^ω are projective R^ω-modules. Similarly, the right R^ω-module R^ω is a direct summand of the free right R^ω-module R^ω. From the decomposition $\Sigma^\alpha R^\omega \cong B \oplus B'$ of right R-modules, it follows that $\Sigma^\alpha (R^\omega) \cong \tilde{B}^\omega \oplus \tilde{B'}^\omega$, so that the module \tilde{B}^ω is a direct summand of the projective right R^ω-module $\Sigma^\alpha (R^\omega)$. Thus B^ω is a projective right R^ω-module.

The free left R-module F with basis $x_1, x_2, \ldots, x_\omega, \ldots$ may be considered as a right R^ω-module. For any $\lambda = (\lambda_{\alpha \beta}) \in R^\omega$, there exists an endomorphism L of the module F such that $L(x_\alpha) = \sum_\beta \lambda_{\alpha \beta} x_\beta$. For any element $a \in F$ set

$$a\lambda = L(a).$$

LEMMA 2. If F is a free left R-module and if R^ω is the ring of all row-finite matrices of size ω over R, then the right R^ω-modules F and \tilde{F} are isomorphic.

Proof. Let $x_1, x_2, \ldots, x_\omega, \ldots$ be a free basis of the R-module F. Each element $a \in F$ determines a row $\varphi(a) = (\mu_1, \mu_2, \ldots, \mu_\omega, \ldots) \in \tilde{F}$ where $a = \Sigma_\omega \mu_\omega x_\omega$ and therefore only finitely many elements μ_ω are non-zero. The mapping φ is clearly an isomorphism of the Abelian groups $(F, +)$ and $(\tilde{F}, +)$. Let $(\lambda_{\alpha \beta})$ be an arbitrary element of the ring R^ω. There exists an endomorphism L of the module F such that

$$L(a) = L\left(\sum_\alpha \mu_\alpha x_\alpha\right) = \sum_\alpha \mu_\alpha L(x_\alpha) = \sum_\alpha \mu_\alpha \left(\sum_\beta \lambda_{\alpha \beta} x_\beta\right) = \sum_\beta \left(\sum_\alpha \mu_\alpha \lambda_{\alpha \beta}\right) x_\beta.$$

We have

$$\varphi(L(a)) = (\sum_\alpha \mu_\alpha \lambda_{\alpha 1}, \sum_\alpha \mu_\alpha \lambda_{\alpha 2}, \ldots, \sum_\alpha \mu_\alpha \lambda_{\alpha \omega}, \ldots)$$

and the lemma is proved.

COROLLARY. A free left R-module F is a projective right R^ω-module.

PROPOSITION 3. For arbitrary left R-modules A and B there is a natural isomorphism

$$\text{Hom}_{R^\omega}(\tilde{A}^\omega, B^\omega) \cong \text{Hom}_R(A, B).$$

Proof. Let $\tilde{f} \in \text{Hom}_{R^\omega}(\tilde{A}^\omega, B^\omega)$ and let $a \in A^\omega$ be an arbitrary element. Then $\tilde{f}(a) = \Sigma_\alpha \tilde{f}(0, \ldots, 0, a_\alpha, 0, \ldots)$, where the summation sign has meaning since at most finitely many elements a_α are different from zero. Noting that the summation is produced by only those indices α for which $a_\alpha \neq 0$, we have

$$\tilde{f}(a) = \sum_\alpha \tilde{f}(0, \ldots, a_\alpha, \ldots) = \left(\sum_\alpha e_{\alpha 1} a_\alpha\right) \tilde{f}(a) = E a \tilde{f}(a),$$

where we denote by $E a$ the matrix in the ring R^ω, having the elements $e_{\alpha \beta}$ in the rows numbered α for which $a_\alpha \neq 0$.

Let $p_1 : A \rightarrow \tilde{A}^\omega$ and $p_2 : B \rightarrow B^\omega$ denote the injection maps of the modules A and B into the first coordinates of the R-modules A^ω and B^ω, respectively. Further, let $\pi_1 : \tilde{A}^\omega \rightarrow A$ and $\pi_2 : B^\omega \rightarrow B$ be the projections of the modules \tilde{A}^ω and B^ω defined by the equations

$$x_1((a_1, a_2, \ldots, a_\omega, \ldots)) = a_1, \quad x_2((b_1, b_2, \ldots, b_\omega, \ldots)) = b_1.$$

For an element $\tilde{f} \in \text{Hom}_{R^\omega}(\tilde{A}^\omega, B^\omega)$ we define a mapping $f \in \text{Hom}_R(A, B)$ by the formula $f(a) = \pi_2 \tilde{f}(p_1(a))$ for any $a \in A$. A homomorphism $f \rightarrow \tilde{f} : \text{Hom}_{R}(A, B) \rightarrow \text{Hom}(\tilde{A}^\omega, B^\omega)$ yields the equality

$$\tilde{f}(a) = \sum_\alpha a_\alpha (p_2 \pi_1)(e_{12})$$

for any $a \in \tilde{A}^\omega$.

777