The concept of a finitary ring is introduced, permitting statement of the conditions under which the concepts of the α- and β-ring coincide.

In [2] V. P. Elizarov introduced the concept of α- and β-rings (by "ring" is always understood "associative ring with an identity element"):

a) Ring R is called an α-ring if every element $a \in R$, such that $Ra \neq R \neq aR$, belongs to a proper two-sided ideal of ring R;

β) Ring R is called a β-ring if each of its maximal (by "maximal" is always understood "proper maximal") two-sided ideals I is completely prime, i.e., from $a_1 \notin I$ and $a_2 \notin I$ it follows that $a_1a_2 \notin I$.

In this article we shall show that for some rings (for example, finite local rings) the concepts of α- and β-rings coincide (compare with the assertion for a ring of triangular 2×2 matrices on p. 229 of [2] which is anti-isomorphic to the semigroup algebra considered on p. 227 of [2]).

For a left ideal L of ring R with $a \in R$, the symbol $L : a$ denotes a right fractional ideal of L, i.e.,

$L : a = \{ r \in R \mid ra \in L \}$. At that, $L : a = L \subseteq L : a$ for any $a \in R$ if and only if L is a two-sided ideal in R, and $L : a \subseteq L$ for any $a \in R \setminus L$ if and only if L is a completely prime ideal [1].

Lemma 1. If W is a maximal left ideal of ring R, then for any $a \in R \setminus W$, $W : a$ is a maximal left ideal in R, and $W = (W : a) : b = W : ba$ for a suitable $b \in R$.

Proof. Let there exist a left ideal L such that $W : a \subseteq L \subseteq R$. Then

$$1 = ba + w$$

for suitable elements $b \in L$ and $w \in W$. Since

$L \setminus (W : a) \neq \emptyset$, to $La \subseteq W$ and $(La, W) = R$.

Consequently,

$$(1 - ab)a = aw \in W \text{ and } 1 - ab \in W : a \subseteq L.$$

Therefore $1 \in L$ and $L = R$, contrary to the condition given. From (\ast) we obtain $xba = x - xw \in W$ for any $x \in W$. Thus,

$W \subseteq W : ba \neq R \text{ and } W = W : ba = (W : a) : b$.

The lemma is proven.

Let W be a maximal left ideal of ring R. Say $Q_W = \{ W : a \mid a \in R \}$ and $W^0 = \bigcap_{a \in R} (W : a) : b$. We note that W^0 is a two-sided ideal.
Lemma 2. Let K_i be maximal left ideals, $1 \leq i \leq n$, and let L be a left ideal of ring R such that $K = \bigcap_{i=1}^{n} K_i \subseteq L \neq R$. Then for a suitable index i_0 and $\rho \in R$ the following relations are satisfied:

$$K : \rho = K_{i_0} : \rho = L : \rho = R.$$

Proof. Suppose that $\bigcap_{i=1}^{n} K_i$ is irreducible, i.e., $\bigcap_{i=1}^{n} K_i \setminus K_j \neq \emptyset$ for any j, $1 \leq j \leq n$. If $K_{i_0} \subseteq L$ for some i_0, then $K_{i_0} = L$, and (***) apparently is satisfied for any $\rho \in \bigcap_{i \neq i_0} K_i \setminus K_{i_0}$. If $K_i \not\subseteq L$, then for $\rho_{n-1} \in K_n \setminus L$ we have $K : \rho_{n-1} = \bigcap_{i=1}^{n-1} K_i : \rho_{n-1} \subseteq L : \rho_{n} \neq R$ and we may carry out the proof by induction. The lemma is proved.

Lemma 3. Let W be a maximal left ideal of ring R such that Q_w is finite. Then for any $c \in R \setminus W^0$ there exists an element $d \in R$ such that $W^0 : dc = W$.

Proof. Since $W^0 : c = \bigcap_{a \in R} (W : ca)$, then, having substituted $K = W^0 : c, K_i = W : ca_i, \rho = d'$, in Lemma 2, we see that there exists an element $d' \in R$ such that $W^0 : d'c = W : d'ca$.

According to Lemma 1 there exists a $b \in R$ such that $W : dc = W^0 : bd'c = W : bd'ca = W$, where $d = bd'$. The lemma is proved.

Assertion 1. Let W be a maximal left ideal of ring R such that Q_w is finite. Then W^0 is a maximal two-sided ideal in R.

Proof. Suppose that there exists a two-sided ideal I such that $R \neq I \supseteq W^0 = \bigcap_{a \in R} (W : a)$. Then for a suitable $a \in R$ there exists an element $c \in R$ such that $R \neq I : c \supseteq W : ca$.

(it is sufficient to substitute $L = I, K = W^0, K_j = W : a_j, \rho = c$ in Lemma 2). Because of maximality $I : c = W : ca$ and $I : d = W$ for a suitable $d \in R$. But $I \subseteq I : d = W$, i.e., $I \subseteq W^0$ and $I = W^0$. The assertion is proved.

We shall say that ring R is (left) finitary if for any maximal (left) ideal W the set Q_w is finite. Clearly, every commutative ring is finitary. If all prime left R-modules over ring R are finite, then ring R is left finitary. (In particular, any finite ring is finitary.)

A simple consequence of Assertion 1 is:

Assertion 2. I is a maximal two-sided ideal of finitary ring R if and only if $I = W^0$ for some maximal left ideal W of ring R.

Since, moreover, $I : d = W$ for a suitable $d \in R$, we immediately obtain:

Theorem. A finitary ring R is a β-ring if and only if every maximal left ideal of ring R is two-sided.

In conclusion, we introduce two corollaries:

Corollary 1. A finitary β-ring is an α-ring.

Actually, any left ideal $Ra = R$ can be extended to a maximal left ideal $W \supseteq Ra$ which is two-sided.

We note that in this case the conceptions of right and left nonidentity elements coincide [2].