LINEAR RECURSION CONGRUENCES
WITH PERIODIC COEFFICIENTS

V. I. Nechaev

The paper deals with the problem of the primitive period of a sequence satisfying a linear recursion congruence, modulo a power of a prime, with periodic coefficients.

1. Let k, n, and m be natural numbers, p a prime, and x an integer. In this paper we shall consider a recursion congruence of the form

$$
\delta_{x+n} \equiv a_{nx}\delta_{x+n-1} + \cdots + a_{1x}\delta_{x} \pmod{p^k},
$$

whose coefficients are integer-valued functions of x with period m modulo p^k, i.e.,

$$
a_{i, x+m} \equiv a_{i, x} \pmod{p^k}, \quad i = 1, \ldots, n,
$$

for all $x \geq 0$, and which, moreover, satisfy for all x the condition

$$(a_{1x}, p) = 1.$$

We call such a congruence a recursion congruence of type (n, m) modulo p^k, while the sequence of integers

$$
\{\delta_x\}_{x \geq 0},
$$

satisfying Congruence (1) is called its solution.

For given p and k, with certain constraints on m, we shall establish an unimprovable bound on the primitive period modulo p^k of the solution to congruence (1). The transition to an arbitrary modulus can be easily performed ([1], Theorem 4). It is also possible to carry the results over to any Dedekind ring, R, on the condition that the factor ring R/\mathfrak{m} with respect to each proper ideal \mathfrak{m} of ring R is finite. The result corresponding to $k = 1$ was elucidated previously [2].

2. In what follows we shall use the term "complex" to denote an ordered collection, while the term "vector" is to be understood as an n-dimensional integer-valued column or row vector if nothing to the contrary is said. The symbol θ denote the n-dimensional zero vector. If a_1, \ldots, a_S are vectors, then the symbol $[a_1, \ldots, a_S]$ denotes the matrix whose columns are, respectively, the vectors a_1, \ldots, a_S. The elements of the matrices considered here, as well as the coefficients of the polynomials, are assumed to be integers. All the square matrices are of the same order, i.e., n. The letter E denotes the unit matrix. By the C-matrix of vector (a_1, \ldots, a_n) we understand the square matrix

$$
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_1 & a_2 & a_3 & \cdots & a_n
\end{pmatrix}
$$

We assume that the reader knows the definitions and simplest properties of congruences for matrices and vectors. A vector is said to be regular if not all its components are multiples of p. A square matrix is called regular if its determinant is not divisible by p.

Let

\[\{\alpha_1, \ldots, \alpha_s\} \] \hspace{1cm} (1)

be some complex of vectors; we shall say that the rank modulo \(p^k \) of complex (1) equals \(r \) \((r \leq s)\) if no vector of any subsystem of \(r \) sequences of vectors of complex (1) is a linear combination (with integer coefficients) modulo \(p^k \) of the remaining vectors of this subsystem. It is clear that the rank modulo \(p^k \) of complex (1) equals \(n \) if and only if, for each \(x \) from 1 to \(s-n+1 \), matrix \([\alpha_1, \ldots, \alpha_{x+n-1}]\) is regular.

The complexes of vectors, \(\{\beta_1, \ldots, \beta_s\} \) and \(\{\gamma_1, \ldots, \gamma_s\} \) will be called equivalent modulo \(p^k \) if

\[[\alpha_1, \ldots, \alpha_s] \equiv [\beta_1, \ldots, \beta_s] \pmod{p^k}. \]

It is clear that the ranks modulo \(p^k \) of complexes of vectors which are equivalent modulo \(p^k \) are equal.

Lemma 1. Let \(\gamma \) be some vector, \(\{\alpha_1, \ldots, \alpha_s\} \) and \(\{\beta_1, \ldots, \beta_t\} \) two complexes of vectors of the same rank, \(n \), modulo \(p^k \). If \(p^k > n \), it is then possible to choose a vector \(\mu \equiv \gamma \pmod{p^k} \) with the condition that the rank of the complex \(\{\alpha_1, \ldots, \alpha_s, \mu, \beta_1, \ldots, \beta_t\} \) modulo \(p^k \) equals \(\min (r+1, n) \).

Proof. The set of linear combinations of all subsystems of \(n-1 \) sequences of vectors of the complex \(\{\alpha_s-n+2, \ldots, \alpha_s, \beta_1, \ldots, \beta_{n-1}\} \) contains no more than

\[n \left(p^{k(n-1)} - 1 \right) + 1 \leq p^n - 2 \]

vectors which are pairwise incongruent modulo \(p^k \). Therefore, we can find a vector \(\mu \) incongruent modulo \(p^k \) to \(\gamma \) and to any such linear combinations. This also proves the lemma.

If \(A \) is a regular matrix, then some of its powers are congruent to \(E \) modulo \(p^k \) (cf., for example, [3], p. 904). The smallest natural \(t \) satisfying \(A^t \equiv E \pmod{p^k} \) is called the period modulo \(p^k \) of matrix \(A \).

Lemma 2. Let \(A \equiv E \pmod{p} \), and let \(\beta \) be the largest integer satisfying \(A^\beta \equiv E \pmod{p^\beta} \). If \(p \neq 2 \), or if \(p = 2 \) and \(\beta = 1 \), then the period of matrix \(A \) modulo \(p^k \) equals \(p^k - \beta \).

As a further part of this lemma, let \(\delta \) be the largest integer satisfying \(A^\delta \equiv E \pmod{2^\delta} \), and let \(B \) be the matrix defined by the equation \(A = E + 2B \). If \(p = 2 \) and \(\beta = 1 \), then the period of matrix \(A \) modulo \(2^k \) equals \(2^k - 1 \), depending on whether or not \(B = -E \pmod{2^{k-2}} \).

This lemma unifies Theorems 5.3, 6.1, and 6.2 of [3]. From Lemma 2 we immediately obtain

Lemma 3. If the period of matrix \(A \) modulo \(p \) equals \(t \), then the period of the same matrix modulo \(p^k \) does not exceed \(t \cdot p^{k-1} \). In particular, this period equals \(t \cdot p^{k-1} \) if

\[A^t \equiv E \pmod{p^t} \quad \text{for} \quad p \neq 2 \]

or

\[A^t \equiv \pm E \pmod{p^4} \quad \text{for} \quad p = 2 \] \hspace{1cm} (2)

Lemma 4. If the characteristic polynomial, \(\phi_A (\lambda) \), of matrix \(A \) of period \(t \) modulo \(p^k \) is irreducible modulo \(p \), and if \(\alpha \) is a regular vector, it then follows from the congruence

\[A^x \alpha \equiv \alpha \pmod{p^k} \]

that \(t \mid n \).

Proof. It obviously suffices for us to show that

\[A^x \equiv E \pmod{p^k}. \]

We obtain this last congruence if we establish that (3) holds for any regular vector. For this we shall show that a consequence of (3) is the existence of a pair of polynomials, \(u(\lambda) \) and \(v(\lambda) \), such that

\[\lambda^x = 1 + u(\lambda) \varphi_A (\lambda) + p^x v(\lambda). \] \hspace{1cm} (4)