DERIVATIVES OF THE RADICALS OF MODULI

V. E. Govorov

UDC 512.2

The radicals of moduli are investigated as functors. Particular attention is given over to
the derivatives of the functor of a radical. The function $R^0 r$ turns out to be a hereditary
radical containing the given one. Several relations between the $R^1 r$ are proved. The arti-
cle is concluded with a description of the hereditary radicals of a Prüfer ring. All the
radicals of a Prüfer ring have the form of torsions in an integral domain.

1. Definitions

Throughout the article A denotes an associative ring with identity element.

In every case the module is understood to mean the unitary left A-module.

Definition 1.1. A class $\%$ of A-modules is called radical if $\%$ satisfies the following conditions:

1.1.1. If $A \subseteq \%$, then the homomorphic image of A is a member of $\%$.

1.1.2. Every module A contains a maximal submodule $r(A)$ belonging to $\%$.

1.1.3. $A/r(A)$ is semisimple, i.e., it does not contain nontrivial submodules belonging to $\%$.

If $r(\%)$ is treated as a functor defined on the category of A-modules, we obtain the following equivalent
of Definition 1.

Definition 1.2. The functor $r: \% \rightarrow \%$, where $\%$ is the category of A-modules, is a radical in $\%$ if
it satisfies the following conditions:

1.2.1. For any module A there exists a monomorphism $r(A) \rightarrow A$ which is a proper map of functors
(r is a subfunctor of the unit functor).

1.2.2. $rr=r$.

1.2.3. $r(A/r(A))=0$.

Definition 1.3. A class $\%$ of A-modules is called radical if it satisfies the following conditions:

1.3.1. $0 \in \%$.

1.3.2. If $A \in \%$, and $\subseteq \%$ in the exact sequence $A \rightarrow B \rightarrow C \rightarrow 0$, then $\subseteq \%$.

1.3.3. If $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_k \subseteq \cdots$ and $\alpha, A_\alpha \subseteq \%$ for all α, then $\cup A_\alpha \subseteq \%$.

Proposition 1.1. Definitions 1.1 and 1.3 are equivalent.

Proof. Let us suppose that the conditions of Definition 1.3 are fulfilled. We consider the exact se-
quence

$$A \rightarrow B \rightarrow 0 \rightarrow 0,$$

and let $A \in \%$; then 1.1.1 follows from 1.3.2.

Let $U \subseteq A$, $V \subseteq A$ and $U \subseteq \%, V \subseteq \%$; then from the exact sequence $0 \rightarrow U \cap V \rightarrow U \cap V \rightarrow 0$ and the now-verified condition 1.1.1 we get $U+V/V \subseteq \%$, and from the exact sequence $0 \rightarrow V \rightarrow U+V \rightarrow U+U/V \rightarrow 0$ and condition 1.3.2 we get $U+V \subseteq \%$.

Moscow Institute of Electronic Machine Construction. Translated from Matematicheskie Zametki,
We have thus proved that if submodulus \(U \) and \(V \) of the modulo \(A \) belong to class \(\mathfrak{F} \), their union in \(A \) belongs to class \(\mathfrak{F} \), hence condition 1.1.2 follows from 1.3.3.

Next we let \(r(A) \) denote the maximal submodulo of \(A \) contained in \(\mathfrak{F} \). We investigate the exact sequence

\[
0 \to r(A) \to A \to A/r(A) \to 0
\]

and the sequence induced by it

\[
0 \to r(A) \to B \to r(A/r(A)) \to 0,
\]

which with the application of condition 1.3.2 yields \(B \subseteq \mathfrak{F} \), i.e., \(B = r(A) \), and \(r(A/r(A)) = 0 \). This proves condition 1.1.3.

Let us suppose that the conditions of Definition 1.1 are satisfied. The proof only requires condition 1.3.2. Let

\[
A \to B \to C \to 0
\]

be an exact sequence, and let \(A \subseteq \mathfrak{F} \), \(C \subseteq \mathfrak{F} \), whereupon \(\text{Im} \ x \subseteq \mathfrak{F} \), and \(r(B) \subseteq \text{Im} \ x \), so that \(B/r(B) \approx C/X \subseteq \mathfrak{F} \), and \(B = r(B) \).

Remark 1. Consider the functor \(F: \mathfrak{C} \to \mathfrak{D} \) from the category \(\mathfrak{C} \) of \(A \)-modules in some category with zero in which it is possible to define the concept of an exact sequence. Let \(F \) be exact on the right, and for any ascending sequence of modules \(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_\alpha \subseteq \cdots \); say that \(F(\bigcup A_\alpha) = 0 \) if \(F(A_\alpha) = 0 \) for all \(\alpha \). Definition 1.3 shows that the class of objects for which \(F(A) = 0 \) is radical. The converse can be proved by factorization of the category of modules with respect to the subcategory of radical modules.

2. Hereditary Radicals

Proposition 2.1. The following conditions are equivalent:

1) The functor \(r \) is exact on the left.

2) If \(A \subseteq B \), then \(r(A) \subseteq r(B) \subseteq A \)

3) If \(A \subseteq B \), and \(B \subseteq \mathfrak{F} \), then \(A \subseteq \mathfrak{F} \)

The proof is straightforward.

Definition 2.1. A radical \(r \) is called hereditary if it satisfies the conditions of Proposition 2.1.

If the functor is exact in Remark 1, then the radical defined by it is hereditary.

Theorem 2.1. If a ring \(A \) is hereditary, the functor \(R^0 r \) is the minimum hereditary radical containing \(r \).

Proof. The functor \(R^0 r \) is defined as follows:

\[
0 \to A \to Q \xrightarrow{\alpha} X \to 0
\]

is an exact sequence with injective module \(Q \); then

\[
R^0 r(A) = \text{Ker} \ r(\alpha) = r(Q) \cap A.
\]

We note that a radical \(r \) is hereditary if and only if \(R^0 r(A) = r(A) \) for any module \(A \). If \(A \) is injective, \(R^0 r(A) = r(A) \) for any radical \(r \).

The functor \(R^0 r \) is exact on the left and, clearly, satisfies the first two conditions of Definition 1.2. We prove the third condition. We assume in the beginning that \(A \) is injective, so that \(R^0 r(A/R^0 r(A)) = R^0 r(A/r(A)) \). Inasmuch as \(A \) is hereditary, \(A/r(A) \) is injective, and therefore

\[
R^0 r(A/r(A)) = r(A/r(A)) = 0.
\]