A criterion is given for finiteness of the number of nonisomorphic nondecomposable representations for the completely decomposable orders over a complete local Dedekind ring which comprise an intersection of maximal orders.

1. Preliminaries

In the article we use \mathcal{O} to denote a complete local Dedekind ring with quotient field k. We let Λ denote an \mathcal{O}-order in a separable k-algebra \mathcal{A} [1]. A Λ-module Λ is called a representation module if as an \mathcal{O}-module it is finitely generated and is without torsion. A submodule $B \subseteq \Lambda$ is called strict [2] if Λ/B is a representation module. A representation module that does not contain nontrivial strict submodules is called irreducible. A module that decomposes into a direct sum of irreducible modules is called completely decomposable.

By a completely decomposable ring we mean an \mathcal{O}-order Λ that is completely decomposable as a Λ-module. Clearly, a ring of this type decomposes into a direct sum of orders in simple k-algebras, hence we are permitted in the analysis of the representations to limit our discussion at once to the case when the algebra \mathcal{A} is simple. Then all irreducible Λ-modules may be regarded as embedded in a unique simple Λ-module, forming a structure with respect to addition and intersection.

For any right (left) representation Λ-module Λ it has defined for it a dual left (right) module $\Lambda^* = \text{Hom}_\mathcal{O}(\Lambda, \mathcal{O})$, where $\Lambda^{**} = \Lambda$, and the correspondence $\Lambda \rightarrow \Lambda^*$ determines the duality of the structures of right and left irreducible modules.

In the ensuing discussion we interpret an injective module to mean a module that is injective in the representation category [2] or, what amounts to the same thing, is dual to a projective module. If a module is simultaneously projective and injective (in the representation category), we call it bijective. We will have use for the following result, which is proved in [3].

Proposition 1.1. An irreducible module over a completely decomposable ring is projective (injective) if and only if it has one and only one maximal submodule (minimal supermodule).

We also recall the definition of the divisibility of modules [14]. We say that a module Λ is divisible by a module B, writing $\Lambda \mid B$, if there exists an epimorphism $\Lambda^m \rightarrow B$, where Λ^m is the direct sum of m copies of Λ.

Throughout the article we assume that Λ is a completely decomposable ring representing the intersection of maximal rings. In this case, if B is a proper submodule of an irreducible module Λ, and $B \cong \Lambda$, then $B \subset AR$, where R is the Jacobson radical of Λ. Moreover, all simple components of the module Λ/AR are distinct, hence its length $l(\Lambda/AR)$ is simply the number of maximal submodules in Λ.

2. An Example

Let D be a finite-dimensional separable field over k, Ω its unique maximal order [5], π the generator of a maximal ideal π of Ω, and $M_n(D)$ the algebra of nth-order matrices over D. We consider the order Λ_n in $M_n(D)$ ($n \geq 2$):
The radical R of Λ_n is equal to $\pi M_n(\Omega)$. Let A be a representation Λ_n-module. Let us examine the exact sequence

$$0 \to AR \to A \to A/AR \to 0.$$

The ring of multipliers AR is $M_n(\Omega)$, so that $AR = B^s$, where B is the unique irreducible $M_n(\Omega)$-module. The module A/AR is a Λ_n/R-module, hence $A/AR = B_1^{s_1} \oplus \ldots \oplus B_n^{s_n}$, where B_1, \ldots, B_n are simple Λ_n/R-modules. Consequently, A corresponds to an element $\alpha \in \text{Ext}^1_{\Lambda_n}(B_1^{s_1} \oplus \ldots \oplus B_n^{s_n}, B')$. It is readily seen that $\text{Ext}^1_{\Lambda_n}(B_1, B) \approx \Omega/\Pi = T$. Therefore α may be regarded as a matrix over T of the form

$$\mathcal{M} = (\mathcal{M}_1 | \mathcal{M}_2 | \ldots | \mathcal{M}_n),$$

where \mathcal{M}_i is an $s \times s_i$ matrix. The converse is easily verified, that every such matrix \mathcal{M} corresponds to a representation Λ_n-module, provided only that

$$(2.1) \quad \text{rank } \mathcal{M} = s, \quad \text{rank } \mathcal{M}_i = s_i \quad (i = 1, \ldots, n).$$

Any automorphism of A translates AR into itself and therefore induces a transformation of \mathcal{M}. It is readily seen that every such transformation decomposes into a product of transformations of the following type:

- (2.2) elementary transformations of the rows of \mathcal{M};
- (2.3) elementary transformations of the column of $\mathcal{M}_i \quad (i = 1, \ldots, n)$.

The module A is decomposable if and only if the matrix \mathcal{M} is decomposable by a sequence of transformations of the type (2.2) and (2.3). Thus, the problem of describing the representations of the ring Λ_n is equivalent to that of reducing matrices \mathcal{M} satisfying the conditions (2.1) by transformations of the type (2.2) and (2.3). We now show that this problem is equivalent to the description of representations of another ring.

Let Γ_n be a subring of the direct sum Ω^n consisting of sets $(\alpha_1, \ldots, \alpha_n)$ such that $\alpha_1 \equiv \alpha_2 \equiv \ldots \equiv \alpha_n \mod \Pi$. The radical of Γ_n is $\pi \Omega^n$, and $\Gamma_n/\pi \Omega^n = T$. Pursuing the same reasoning with regard to Γ as for Λ_n, we see that the description of the representations of Γ_n is tantamount to the reduction of matrices of the form

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_1' \\ \vdots \\ \mathcal{M}_n' \end{pmatrix}$$

with coefficients from T, where any elementary transformations are allowed over the columns of \mathcal{M}', the same being true over the rows inside every \mathcal{M}_i', and if the dimensionality of \mathcal{M}_i' is $s_i' \times s_i'$, then \(\text{rank } \mathcal{M}' = s' \), \(\text{rank } \mathcal{M}_i' = s_i' \).

Consequently, from any representation Λ_n-module we obtain a representation Γ_n-module by transposition of the corresponding matrix, and vice versa. Let us analyze the cases $n = 2, 3, 4$.

$n = 2$. It follows from [3] that every representation Λ_2-module is completely decomposable (as is easily verified by direct computation). There are altogether three nondecomposable (and irreducible) modules.

$n = 3$. The representations of Λ_3 (triplets) have been described by Bass [6].* There are eight nondecomposable representations. Therefore, Λ_3 also has eight nondecomposable representations, including seven irreducible members and the representation C corresponding to the matrix

*See footnote on page following.