The author considers convex functionals \(f_t \) defined on the open convex subset \(G \) of real \(B \)-space \(X \) and continuous at \(x_0 \in G \). All linear functionals on \(X \) which are support functionals of form \(\int_T f_t(\omega) \mu(\omega) \) and \(\max_{t \in T} f_t(\omega) \) at \(x_0 \) are described.

Let \(G \) be a convex open subset of the real \(B \)-space \(X \) and let \(f \) be a convex functional defined on \(G \) and continuous at \(x_0 \in G \). The linear functional \(l \) on \(X \) is called a support functional to \(f \) at \(x_0 \) if \(l(x) - l(x_0) = f(x) - f(x_0) \) for all \(x \in G \). In addition, the set of functionals which are support functionals to \(f \) at point \(x_0 \) is called \(M(f, x_0) \); it is easy to see that \(M(f, x_0) \) is a convex weakly bicomplete subset \(X' \).

Support functionals are important in variation problems (see [1]).* In optimum control problems it is necessary to find a set \(M(f, x_0) \) when \(f \) is obtained with the aid of some operation from the functionals \(f_t \) for which the sets \(M(f_t, x_0) \) are known [1]. This problem also appears in extremum problems in approximation theory (see [2], [3]). The following relationships, in particular, were established in [1, 2]:

\[
M \left(\sum_{i=1}^{n} \alpha_i f_i, x_0 \right) = \sum_{i=1}^{n} \alpha_i M(f_i, x_0),
\]

where \(\alpha_i \) are positive numbers, \(t = 1, \ldots, n \), and

\[
M \left(\max_{t \in \{1, \ldots, n\}} f_t, x_0 \right) = \text{conv} \bigcup_{t \in \{1, \ldots, n\}} M(f_t, x_0),
\]

where conv denotes a convex shell and \(I_0(x_0) = \{t : f_t(x_0) = \max_{t \in \{1, \ldots, n\}} f_t(x_0)\} \).

The aim of this article is to extend these relationships to the case of an infinite set of functionals \(f_t \).

§1. Basic Results. We shall henceforth assume that \(G \) denotes an open convex subset in real \(B \)-space \(X, x_0 \in G \) and all considered functionals are assumed to be defined on \(G \), convex, and continuous at \(x_0 \).†

Theorem 1. Let \((T, \mu)\) be a space with measure ‡, \(t \in T \). We assume that the following conditions are satisfied: a) \(X \) is separable; b) \(f_t(x) \in \mathcal{L}^1(T, \mu) \) for any \(x \in G \); c) there exists a number \(\delta > 0 \) and a function \(c(t) \in \mathcal{L}^1(T, \mu) \), such that \(|f_t(x) - f_t(x_0)| \leq c(t) \) for all \(t \in T \) and all \(x, x_0 \in U_\delta(x_0) = \{x : \|x - x_0\| \leq \delta\} \).

Then the formula \(f(x) = \int_T f_t(x) \mu(\omega) \), \(x \in G \) defines the convex functional continuous at \(x_0 \) and \(M(f, x_0) \) consists of the functionals \(l \) which can be represented in the form \(l(x) = \int_T l_t(x) \mu(\omega) \), \(x \in X \), where \(l_t \in M(f_t, x_0) \) for any \(t \in T \) and \(l_t(x) \in \mathcal{L}^1(T, \mu) \) for any \(x \in X \).

If, moreover, \(c(t) \in \mathcal{L}^p(T, \mu) \), where \(1 < p \leq \infty \), then \(l_t(x) \in \mathcal{L}^p(T, \mu) \) for any \(x \in X \). When the set \(T \) is countable we do not require \(X \) to be separable.

*G. Minkovskii also considered support functionals in the finite dimensional case in association with problems on the geometry of numbers; since that time they have been widely used in various problems.
†Continuity on \(G \) actually follows from continuity at \(x_0 \) and convexity on the open set \(G \) (see [4]); however, this will not be required.
‡This means that the \(\sigma \)-algebra \(\Sigma \) of subsets \(T \) and \(\mu \) (the non-negative countably additive function on \(\Sigma \)) is specified. For integration over the measure \(\mu \) and spaces \(\mathcal{L}^p(T, \mu) \) see [5].
E. G. Gold'shtein [3] previously obtained a similar result using much stronger assumptions.*

Corollary. Let \(0 < \alpha_t \leq C < \infty, t = 1, 2, \ldots \) If \(\{f_t(x)\} \in \ell^1 \) for any \(x \in G \) and there exist \(c = (c_t) \in \ell^1 \) and \(\delta > 0 \), such that \(|f_t(x) - f_t(x_0)| \leq c_t \) for all \(x \in U_\delta(x_0) \) and all \(t = 1, 2, \ldots \), then \(\sum_{t=1}^{\infty} a_t(x) \) is a convex functional on \(G \) which is continuous at \(x_0 \) and \(M \left(\sum_{t=1}^{\infty} a_t(x), x_0 \right) \) consists of functionals \(l \) which can be represented in the form \(l(x) = \sum_{t=1}^{\infty} a_t(x), x \in X \), where \(l_t \in M(f_t, x_0), t = 1, 2, \ldots \), and \(\{l_t(x)\} \in \ell^1 \) for any \(x \in X \).

Theorem 2. Let \(T \) be a set \(\sup_{t \in T} f_t(x) < \infty \) for any \(x \in G \) and let there exist \(c > 0, \delta > 0 \), such that \(|f_t(x) - f_t(x_0)| \leq c \) for all \(t \in T \) and all \(x \in U_\delta(x_0) \). Then \(\sup_{t \in T} f_t(x) \) is a convex functional on \(G \) which is continuous at \(x_0 \) and

\[
M(\sup_{t \in T} f_t, x_0) = \left(\bigcap_{\epsilon > 0} \text{conv} \bigcup_{t \in T} M(f_t, x_0) \right),
\]

where the bar denotes weak closure and \(J_{\epsilon}(x_0) = \{t \in T : f_t(x_0) \geq \sup_{t \in T} f_t(x_0) - \epsilon\} \).

Theorem 3. Let \(T \) be a bicompactum. We assume that the following conditions are satisfied: a) \(X \) is separable; b) the function \(f_t(x) \) is continuous on \(T \) for all \(x \in G \); c) there exist \(c > 0, \delta > 0 \), such that \(|f_t(x) - f_t(x_0)| \leq c \) for all \(t \in T \) and all \(x \in U_\delta(x_0) \). Then \(f(x) = \max_{t \in T} f_t(x) \) is a convex functional on \(G \) which is continuous at \(x_0 \) and \(M(f, x_0) \) consists of the functionals \(l \) which can be represented as \(l(x) = \int_T f_t(x)p(dt) \), where \(p \) is the regular Borel measure on \(T, \mu(T) = 1 \), the carrier \(\mu \) lies in \(L_0(x_0) = \{t \in T : f_t(x_0) = f(x_0)\} \), and \(l_t \in M(f_t, x_0) \) for any \(t \in T \) and \(l_t(x) \in L^\infty(T, \mu) \) for any \(x \in X \).

If the set \(T \) is countable we do not require \(X \) to be separable.

§2. Proof. Let \(f \) be a convex functional defined on \(G \) and continuous at \(x_0 \). Since \(f \) is convex it follows that for any \(h \in X \) the ratio \(\frac{f(x_0 + \epsilon h) - f(x_0)}{\epsilon} \) approaches some finite limit \(\epsilon \downarrow 0 \) when \(dfx_0(h) \). It is not difficult to show that \(dfx_0 \) is a semiadditive positive uniform functional on \(X \) (see, for example, [1]).

Lemma 1. The functional \(dfx_0 \) is continuous on \(X \) and \(M(f', x_0) = M(dfx_0, 0) \).

We omit the proof in view of its triviality.

Let for any \(t \in T \) the semiadditive positive uniform functional \(p_t \) be specified on \(X \), where \(p_t(x) \in L^1(T, \mu) \) for any \(x \in X \) and \(p_t(x) \leq c(t) \|x\| \) for all \(t \in T, x \in X \), where \(c(t) \in L^1(T, \mu) \). Consider the mapping \(F : X \rightarrow L^1(T, \mu), F(x) = p_t(x), x \in X \); it immediately follows from the properties of \(p_t \) that \(F \) is continuous.

Let \(l_t, t \in T \) be a family of linear functionals on \(X \) satisfying the following conditions: 1) \(l_t \in M(p_t, 0) \) for any \(t \in T \); 2) \(l_t(x) \in L^1(T, \mu) \) for any \(x \in X \). We associate the linear mapping \(A : X \rightarrow L^1(T, \mu) \), which operates according to the formula \(A(x)(t) = l_t(x), x \in X \) with each such family.

Lemma 2. For any \(Ax \equiv F(x) \), we have \(x \in X \). If \(X \) is separable, then any linear mapping \(A \) possessing this property produces some family of functionals \(l_t, t \in T \) satisfying conditions 1) and 2).

Proof. It is clear that only the second statement is required in the proof. Let \(\Gamma \) be the Hamel basis (maximum linearly independent system of elements) in \(L^1(T, \mu) \) [6]. Then, as is known, any element in \(L^1(T, \mu) \) is represented uniquely in the form of a finite combination of elements \(\Gamma \). The classes of functions

*The author of [3] considered the topological space \(T \) with Borel measure \(\mu, \mu(T) < \infty \) and assumed that: a) \(X \) is separable; b) \(f_t(x) \) (as a function of \(t \)) is continuous and bounded on \(T \) for any \(x \in G \); c) \(f_t(t) \) as a function of two variables \((t, x) \) is uniformly continuous on \(T \times U_\delta(x_0) \) for some \(\delta > 0 \). Under these assumptions, a representation of any \(l \in M(f_t, x_0) \) in the form \(l(x) = \int_T l_t(x)\mu(dt) \) was obtained in [3], where \(l_t \in M(f_t, x_0) \) and \(l_t(x) \) are \(\mu \)-measurable for any \(x \in X \).

†I.e., \(dfx_0(h_1 + h_2) \leq dfx_0(h_1) + dfx_0(h_2) \) for any \(h_1, h_2 \in X \) (semiadditivity) and \(dfx_0(\alpha h) = \alpha dfx_0(h) \) for any \(h \in X, \alpha \geq 0 \) (positive uniformity).