ON A CHARACTERISTIC PROPERTY
OF THE LORENTZ SPACE IN THE CLASS
OF SYMMETRIC SPACES

D. V. Salekhov

We establish a criterion for the equivalence of norms in a symmetric space and in the Lorentz space, in particular, a criterion for the equivalence of norms in an Orlicz space and in the Lorentz space.

By a symmetric space we mean [1] the space E of functions, measurable on [0, 1], satisfying the conditions: 1) if $x(t) \in E$ and if the functions $|x(t)|$ and $|y(t)|$ are equimeasurable, then $y(t) \in E$ and $\|y(t)\|_E = \|x(t)\|_E$; 2) if $|y(t)| \leq |x(t)|$ and $x(t) \in E$, then $y(t) \in E$ and $\|y(t)\|_E \leq \|x(t)\|_E$.

The function $\varphi(t) = \|x_0(s)\|_E$ (me = t), where $x_0(t)$ is the characteristic function of the set $e \subseteq [0, 1]$, is called the fundamental function of the space E. The function $\varphi(t)$ is nondecreasing [1] and, with accuracy up to an equivalent norm, $\varphi(t)$ is concave [9]. Hence, in what follows we shall always assume that $\varphi(t)$ satisfies these conditions.

Consequently, $\varphi'(t)$ exists almost everywhere. In addition we shall assume that $\lim_{t \to 0} \varphi(t) = 0$. This is equivalent to the condition that $E \subseteq L_\infty$ (see [1]).

Let Λ_φ denote the Lorentz space and let M_φ denote the Marcinkiewicz space. The norms in Λ_φ and M_φ are defined by:

$$|x(t)|_{\Lambda_\varphi} = \int_0^1 x^*(t) d\varphi(t), \quad \|x(t)\|_{M_\varphi} = \sup_{0 \leq t \leq 1} \frac{\varphi(t)}{t} \int_0^t x^*(t) dt,$$

where $x^*(t)$ is a nonincreasing rearrangement of $|x(t)|$.

The spaces Λ_φ and M_φ have the same fundamental function $\varphi(t)$.

If E is a symmetric space and $\varphi(t)$ is the fundamental function of E, then $\Lambda_\varphi \subseteq E \subseteq M_\varphi$ and this embedding is continuous [1].

Let E' denote the space associated to E, that is, the space of functions $y(t)$ such that

$$\|y(t)\|_{E'} = \sup_{0 \leq t \leq 1} \left| \int_0^t y(t) x(t) dt \right| < \infty.$$

The space E' is symmetric. The fundamental function of E' is the function $\varphi^*(t) = t/\varphi(t)$, where $\varphi(t)$ is the fundamental function of E.

We denote by E'' the space associated to E'.

1. Our main result is Theorem 1 which gives a characteristic property of the Lorentz space in the class of symmetric spaces.

THEOREM 1. Let E be a symmetric space and let $\varphi(t)$ be its fundamental function.
1) If \(\varphi'(t) \) belongs to \(E' \) then \(E \) is separable and the norms of the spaces \(E, E'' \) and of the space \(\Lambda_{\varphi} \) are equivalent. The bound for the norms is as follows:

\[
x(t)_{E} \leq \|x(t)\|_{\Lambda_{\varphi}} \leq \|\varphi'(t)\|_{E'} \|x(t)\|_{E''} \leq \|\varphi'(t)\|_{E'} \|x(t)\|_{E}.
\]

(1)

2) If the spaces \(E \) and \(\Lambda_{\varphi} \) have equivalent norms, then \(\varphi'(t) \in E' \).

Proof. Let us prove the first part of the Theorem. The space \(E \) is continuously embedded in \(E'' \) and

\[
\|x(t)\|_{E''} \leq \|x(t)\|_{E}.
\]

(2)

The space \(E'' \) is continuously embedded in the Lorentz space \(\Lambda_{\varphi} \). In fact, since the space associated to a symmetric space is a symmetric space and, by hypothesis, \(\varphi'(t) \in E' \), then for any function \(x(t) \in E \) we have

\[
\|x(t)\|_{\Lambda_{\varphi}} = \int_{0}^{1} x'(t) \varphi'(t) dt \leq \|\varphi'(t)\|_{E'} \|x(t)\|_{E''}.
\]

(3)

This inequality means that the space \(E'' \) is continuously embedded in \(\Lambda_{\varphi} \). It was shown in [1] that \(\Lambda_{\varphi} \) is continuously embedded in \(E \) and that

\[
\|x(t)\|_{E} \leq \|x(t)\|_{\Lambda_{\varphi}}.
\]

(4)

The inequality (1) follows from (2), (3), and from (4) and, hence, the norms in the spaces \(E, E'' \) and \(\Lambda_{\varphi} \) are equivalent. The separability of \(E \) follows from the equivalence of the norms in \(E \) and \(\Lambda_{\varphi} \) and from the separability of \(\Lambda_{\varphi} \).

To prove the second part of the theorem it is sufficient to show that \(\varphi'(t) \in M_{\Phi}^* \) because the Marcinkiewicz space \(M_{\Phi}^* \) (see [3]) is associated to \(\Lambda_{\varphi} \). Let us show that \(\varphi'(t) \in M_{\Phi}^* \). Since \(\Phi^*(t) = t/\varphi(t) \), we have that

\[
\|\varphi'(t)\|_{M_{\Phi}^*} = \sup_{0 < t < 1} \left(\int_{0}^{1} \frac{\varphi^*(t)}{t} \varphi'(t) dt \right) = \sup_{0 < t < 1} \left(\frac{1}{\varphi(t)} \int_{0}^{1} \varphi'(t) dt \right) = 1,
\]

that is, \(\varphi'(t) \in M_{\Phi}^* \), and the theorem is proved.

Suppose that \(M(u) \) is an \(N \)-function and that \(N(v) \) is its complementary function (see [4], p. 22). Let \(L_{M}^* \) denote the Orlicz space generated by the \(N \)-function \(M(u) \). A norm in \(L_{M}^* \) is given by

\[
\|x(t)\|_{M} = \sup \left\{ |x(t) y(t)| \right\},
\]

where the supremum is taken over all functions \(y(t) \) satisfying the condition

\[
\int_{0}^{1} N[y(t)] dt \leq 1.
\]

The fundamental function of \(L_{M}^* \) is \(\varphi_{M}(t) = tN^{-1}(1/t) \) (see [4], p. 88).

Let \(q(v) \) denote the right derivative of the \(N \)-function \(N(v) \).

COROLLARY 1. If the function

\[
\varphi_{M}(t) = N^{-1}(1/t) - \frac{1}{t} N^{-1}(1/t)
\]

belongs to the Orlicz space \(L_{N}^* \), then the space \(L_{M}^* \) is separable and the norms in \(L_{M} \) and \(\Lambda_{\varphi_{M}} \) are equivalent.

Proof. We denote the space \(L_{M}^* \) by \(E \). The pairs of spaces \(E' \) and \(L_{N}^* \) and \(E'' \) and \(L_{M}^* \) have equivalent norms and the following holds:

\[
\frac{1}{\rho} \|y(t)\|_{N} \leq \|y(t)\|_{E'} \leq \|y(t)\|_{N} \quad (y(t) \in L_{N}^*);
\]

\[
\frac{1}{\rho} \|z(t)\|_{M} \leq \|z(t)\|_{E'} \leq 2 \|z(t)\|_{M} \quad (z(t) \in L_{M}^*).
\]

By hypothesis \(\varphi_{M}(t) \in L_{N}^* \). Hence \(\varphi_{M}(t) \in E' \). When we apply Theorem 1 we obtain the assertion in the corollary.

2. The authors of [5] considered the question of the convergence to zero of the family of linear functionals.