Two canonical polynomial representations of Boolean functions are introduced: polynomial perfect normal form and polynomial derivative positive form in the Boolean function \(g \). We derive the necessary and sufficient conditions on the function \(g \) for the existence of such representations for any Boolean function.

One of the main stages in discrete logic design is the representation of Boolean functions by various forms \([1, 2]\). The widespread use in electronics of integrated circuits that include "modulo 2 adders" \([3]\) focuses the attention on the representation of Boolean functions by polynomial forms. In this paper, we introduce two types of canonical polynomial representations of Boolean functions: polynomial perfect normal form and polynomial derivative positive form in the Boolean function \(g \). We obtain necessary and sufficient conditions on the function \(g \) for the existence of such representations for any Boolean function. The proposed forms are a generalization of standard representations: the polynomial perfect normal form \([4]\) and the Zhegalkin polarized polynomial \([5]\). These standard representations are obtained from the new forms by taking the conjunction of variables as the function \(g \). An algorithm for minimization of the representation of functions by these forms is described.

Recall that a mixed derivative of Boolean function \(f(x_1, \ldots, x_n) \) with respect to variables \(x_{i_1}, \ldots, x_{i_m} \) \((1 \leq i_1 \leq \ldots \leq i_m \leq n)\) is the function \(\left. \frac{\partial^{m}}{\partial x_{i_1} \cdots \partial x_{i_m}} f(x_1, \ldots, x_n) \right|_{x_{i_1}=0, \ldots, x_{i_m}=0} \) of \((n-m)\) variables defined by equality \(f^{(m)}_{x_{i_1}, \ldots, x_{i_m}}(x_1, \ldots, x_n) = \sum f(x_{i_1}, \ldots, x_{i_m}, x_{i_1}, \ldots, x_{i_m}) \) where summation is over all the combinations \((a_1, \ldots, a_{i_m})\). Denote by \(f^{(\tau)}(x_1, \ldots, x_n) \) the mixed derivative of the function \(f(x_1, \ldots, x_n) \) with respect to the variables corresponding to 1s in the binary expansion \(\tau = 2^{n-1} \tau_1 + \ldots + 2^{0} \tau_n \), \(0 \leq \tau \leq 2^{n} - 1 \). For simplicity, a mixed derivative will be called a derivative.

A function is called degenerate iff
\[f(x_1, \ldots, x_n) = 0 \] and nondegenerate otherwise. In other words, the vector of values of a degenerate function has an even number of 1s.

1. Polynomial Perfect Normal Forms in Boolean Functions

We say that the Boolean function \(f(x_1, \ldots, x_n) \) has a polynomial perfect normal form (PPNF) in the Boolean function \(g(x_1, \ldots, x_n) \) if it is uniquely representable in the form
\[
f(x_1, \ldots, x_n) = \sum_{s=0}^{p} a_s g(x_1^s, \ldots, x_n^s),
\]
where \(\tau = \tau_{m}2^0 + \ldots + \tau_12^{n-1}, a_s \in \{0, 1\} \).

THEOREM (on the existence of PPNF). Any Boolean function \(f(x_1, \ldots, x_n) \neq 0 \) has a PPNF in the Boolean function \(g(x_1, \ldots, x_n) \) if and only if \(g(x_1, \ldots, x_n) \) is a nondegenerate function, and \(a_s = (g(x_1^s, \ldots, x_n^s))^{(\tau)} \).

Proof is by the method of undetermined coefficients. To find the coefficients \(a_0, \ldots, a_p \), transform the expression (1) into a system of \(2^n \) equations in \(2^n \) unknowns, where each equation is the expression (1) for a particular combination of the variables \((x_1, \ldots, x_n)\):
\[
\begin{align*}
a_{0} & \oplus a_{1} (1, \ldots, 1) \oplus a_{1} (1, \ldots, 1, 0) \oplus \ldots \oplus a_{p} (0, \ldots, 0) = f(0, \ldots, 0), \\
a_{0} & \oplus a_{1} (1, \ldots, 1, 0) \oplus a_{1} (1, \ldots, 1) \oplus \ldots \oplus a_{p} (0, \ldots, 0, 1) = f(0, \ldots, 0, 1),
\end{align*}
\]

or equivalently in matrix notation

$$G \cdot A = F,$$

(2)

where G is the matrix of values of the function $g(x_1, x_2, \ldots, x_n)$ according to the system, $A = (\alpha_0, \alpha_1, \ldots, \alpha_p)^T$, $F = (f(0, 0, 0, \ldots, 0), f(0, 0, 1, \ldots, 1), \ldots, f(1, 1, 1, \ldots, 1))^T$. Note that the matrix G satisfies the equality

$$G = G^T$$

(3)

because of the obvious identity $g(\alpha_1, \ldots, \alpha_n) = g(\alpha_1^T, \ldots, \alpha_n^T)$. Consider the product $G^T \cdot G$. By equality (3), it suffices to consider all possible products of the columns of G, i.e., the sums

$$s_{ij} = \sum g(\delta_1^i, \ldots, \delta_n^i) \cdot g(\delta_1^j, \ldots, \delta_n^j),$$

(4)

where summation is over all the combinations $(\delta_1, \ldots, \delta_n)$ and the combinations $(\sigma_1, \ldots, \sigma_n)$ and (τ_1, \ldots, τ_n) are binary representations of the numbers i and j, respectively.

For $i = j$, the combinations $(\sigma_1, \ldots, \sigma_n)$ and (τ_1, \ldots, τ_n) are identical and (4) is transformed as follows:

$$s_{ii} = \sum g(\delta_1^i, \ldots, \delta_n^i) \cdot g(\delta_1^i, \ldots, \delta_n^i) = \sum g(\delta_1^i, \ldots, \delta_n^i) = \sum g(\delta_1^i, \ldots, \delta_n^i) = g^{(0)}(x_1, \ldots, x_n).$$

Hence it follows that $s_{ii} = 1$ if and only if the function $g(x_1, \ldots, x_n)$ is nondegenerate.

Let $i \neq j$. We will show that in this case $s_{ij} = 0$. To prove this fact, define the functions $\varphi_l, l \in \{0, \ldots, p\}$, on the columns of the matrix G. Let $A = (\alpha_0, \alpha_1, \ldots, \alpha_p)$ be a column of the matrix G. Then let $\varphi_l(A) = (\varphi_l(\alpha_0), \ldots, \varphi_l(\alpha_p)) = (\alpha_{l(0)}, \ldots, \alpha_{l(p)})$. For natural $k, l \leq p$ such that $k = \beta_n - 2^{n-1} - \cdots - 2^0 \beta_0, l = \gamma_n - 2^{n-1} - \cdots - 2^0 \gamma_0$, where $\beta_n, \gamma_n \in \{0, 1\}$, define $\varphi_l(k)$ as $\varphi_l(k) = (\beta_{n-1} \oplus \gamma_{n-1}) 2^{n-1} + \cdots + 2^0 (\beta_0 \oplus \gamma_0)$. These functions obviously act as permutations of the elements of the column A.

Note simple properties of these functions:

1) $\varphi_l(\varphi_l(A)) = A$, 2) $\varphi_l(\varphi_l(A)) = \varphi_l(\varphi_l(A))$, 3) $\varphi_l(A_0) = A_0$, 4) $A_0 = \varphi_l(\varphi_l(A_0))$,

where A is any column of the matrix G and A_0 is the i-th column of the matrix G (the indexing starts with 0).

The first two properties follow directly from definitions. To prove the third property, consider an arbitrary element a_r of the column A_0. In our indexing, $a_r = g(\tau_1, \ldots, \tau_n)$, where $\tau = 2^{n-1} \tau_1 + \cdots + 2^0 \tau_n$. Let $a = 2^{n-1} \sigma_1 + \cdots + 2^0 \sigma_n$. Then by definition of the functions φ

$$\varphi_\sigma(a) = 2^{n-1} (\tau_1 + \sigma_1) + \cdots + 2^0 (\tau_n + \sigma_n),$$

$$\varphi_\sigma(a_0) = g((\tau_1 + \sigma_1)^0, \ldots, (\tau_n + \sigma_n)^0) = g((\delta_1^i, \ldots, \delta_n^i)).$$

By construction of the matrix G, the right-hand side of this equality is the τ-th element of the column A_0.

The last property easily follows from properties 1-3.

To complete examination of case $i \neq j$, note that if sum (4) contains the term $g(\delta_1^i, \ldots, \delta_n^i) \cdot \varphi_j(g(\delta_1, \ldots, \delta_n))$, then it also contains the term $\varphi_j(g(\delta_1^i, \ldots, \delta_n^i)) \cdot g(\delta_1, \ldots, \delta_n)$. which is equal to the former by properties 1-4. The sum s_{ij} thus contains an even number of 1s, i.e., $s_{ij} = 0$.

The determinant of the matrix G thus does not vanish if and only if the function $g(x_1, \ldots, x_n)$ is nondegenerate. Hence follows existence and uniqueness of the coefficients in the expansion (1).

Left-multiply by G the equality (2) for a nondegenerate function: $G \cdot G \cdot A = G \cdot F$. We have proved that $G \cdot G = E$. Then $\alpha = 1$ if and only if $\sum g(\delta_1^i, \ldots, \delta_n^i) \cdot f(\delta_1, \ldots, \delta_n) = 1$, where the sum is over all the combinations $(\delta_1, \ldots, \delta_n)$ and $\tau = 2^{n-1} \tau_1 + \cdots + 2^0 \tau_n$. This is equivalent to nondegeneracy of the function $g(x_1, \ldots, x_n) \& f(x_1, \ldots, x_n)$. Q.E.D.