OPTIMAL INVENTORY MANAGEMENT UNDER INCOMPLETE DEMAND INFORMATION

L. S. Stoikova

A single-period, single-commodity inventory management model is considered. A minimax-cost ordering rule is derived for the case when only the mean and the variance of the demand distribution function are known.

1. INTRODUCTION

The optimal single-period volume of deliveries \(Q \) minimizing the mean losses in a system that sells goods from stock was derived in [1] assuming that the demand distribution function was unknown and only its first two moments \(s_1 \) and \(s_2 \) were known. However, the solution obtained in [1] is incomplete. Thus, Theorem 2 [1, p. 255] is true only for \(Q > s_2/2s_1 \). Moreover, it is assumed in [1] that the maximum demand and the maximum inventory level are unbounded (or unknown), not a very realistic assumption.

In this paper, we derive a complete solution of the problem by a method that differs from that in [1]. We also examine the case of bounded demand. Our paper only considers a single period of deliveries and sales, which is treated in isolation. Such formulations have been used in previous applications, e.g., in [4].

2. STATEMENT OF THE PROBLEM AND REVIEW

We assume that goods can be delivered to inventory only at the beginning of the period and that \(Q \) is the unknown volume of deliveries. The demand for these goods is a random variable \(X \), \(0 \leq X \leq A \) (\(A \) is the maximum allowed demand, \(0 < A < \infty \)) with an unknown distribution function \(F(x) = P\{X < x\} \). We only know that the distribution function \(F(x) \) is from the class \(K \):

\[
K = \left\{ F : F(0^-) = 0, \quad F(A) = 1, \quad \int_0^A x\,dF(x) = s_1, \quad \int_0^A x^2\,dF(x) = s_2, \quad 0 < s_1 < A, \quad s_1^2 < s_2 < s_1A \right\}.
\]

The maximum inventory does not exceed the maximum demand: $0 \leq Q \leq A$. The following pricing system is given:

q is the loss associated with each unit of unsold inventory; p is the penalty for each unit of unsatisfied demand, $p, q > 0$. Then the mean loss ML in the system during the entire period is

$$ML = q \int_0^Q (Q - x) \, dF(x) + p \int_Q^A (x - Q) \, dF(x) =$$

$$= (p + q) \int_0^Q (Q - x) \, dF(x) + p (s_1 - Q).$$

(1)

The problem is to find

$$Q^* = \arg \min_{Q \in K} \sup_{F \in K} ML$$

as a function of the parameters q, p, A, s_1, s_2.

The solution of this problem is stated at the end of the paper in the form of Theorem 2 and a corollary. Section 3 gives the "worst" demand distributions which result in highest mean losses. Section 4 presents the necessary background for proving the bounds of Sec. 3 and Sec. 5 gives the proof. Finally, Sec. 6 minimizes the maximum mean loss and derives optimal rules for the determination of the inventory level Q as a function of the parameters.

3. EXACT UPPER BOUNDS ON MEAN LOSSES

Let $A < \infty$. Then the following upper bounds hold.

Bound 1. For Q in the interval $[0; s_2/2s_1)$,

$$\sup_{F \in K} \int_0^Q (Q - x) \, dF(x) = \frac{Q (q \sigma^2) / s_3}{s_2}$$

and this bound is attained on a two-step distribution function $F_1 \in K$ with points of increase $x_1 = 0$ and $x_2 = s_2/s_1$; $\sigma^2 = s_2 - s_1^2$.

Bound 2. For Q in the interval $(s_2/2s_1; A_1)$, where $A_1 = (A^2 - s_2) /[2(A - s_1)]$,

$$\sup_{F \in K} \int_0^Q (Q - x) \, dF(x) = \frac{1}{2} \left(Q - s_1 + \sqrt{Q^2 - 2Qs_1 + s_2^2} \right)$$

and this bound is attained on a two-step distribution function $F_2 \in K$ with points of increase $x_1^0 = Q - [(Q - s_1)^2 + \sigma^2]^{1/2}$ and $x_2^0 = Q + [(Q - s_1)^2 + \sigma^2]^{1/2}$.

Bound 3. For Q in the interval (A_1, A),

$$\sup_{F \in K} \int_0^Q (Q - x) \, dF(x) = (A - s_1) \frac{QA - s_1 (Q + A) + s_3}{A^2 - 2As_1 + s_2}$$

and this bound is attained on a two-step distribution function $F_3 \in K$ with points of increase

$$y_1 = \frac{s_1 A - s_3}{A - s_1}, \quad y_2 = A.$$

If $A = \infty$, then bounds 1 and 2 hold with ∞ substituted for A. These bounds were derived by the author in 1978 [2]. From bounds 1-3 and (1), we obtain the maximum mean losses as a function of Q.

1. If $0 \leq Q < s_2/2s_1$, then

$$\sup_{F \in K} ML = Q (q \sigma^2 - ps_3) / s_3 + ps_4 = \Phi_1(Q).$$

2. If $s_2/2s_1 < Q < (A^2 - s_2) /[2(A - s_1)]$, then

$$\sup_{F \in K} ML = \frac{p + q}{2} \left(Q - s_1 + \sqrt{(Q - s_1)^2 + \sigma^2} \right) + p (s_1 - Q) = \Phi_2(Q).$$