The author is grateful to Sh. A. Alimov for constant interest in the work.

LITERATURE CITED

QUADRATIC SINGULARITIES OF THE PFaffIAN THETA DIVISOR OF A PRYM VARIETY

V. I. Kanev

We cite certain facts from the theory of Prym varieties, which we will use. All of them are contained in [1, 2]. Let $\pi: C \to \bar{C}$ be an unramified double covering of nonsingular curves and i be the involution of C corresponding to π.

The Prym variety P is defined as follows:

$$P = \{x - i(x) \mid x \in J(\bar{C})\},$$

where $J(\bar{C})$ is the Jacobian of \bar{C}. A canonical principal polarization is defined on P by the divisor E. If D is an arbitrary divisor of degree $2g - 2$ on C such that $NmD \subseteq |K_C|$, then

$$E = \{\xi \in J(\bar{C}) \mid L_\xi \simeq L(D), \quad \deg D = 2g - 2, \quad NmD \subseteq |K_C|, \quad \dim \Gamma(O(D)) = 0 \pmod{2} \& > 0\}.$$

Let us set $P_{2g-2} = P(T_{\bar{C}},)$, $P_{2g-2} = P(T, p)$, and $P_{2g-2} \supseteq P_{2g-2}$. Let σ be a divisor on C, $2\sigma \sim 0$, corresponding to the covering π.

Then we have the natural identifications: $P_{2g-2} = |K_\bar{C}|^*$ and $P_{2g-2} = |K_C(\sigma)|^*$. Let $\xi \equiv \text{sign} E$. After displacement and projection, we can consider the tangent cones Q and q at ξ respectively to Θ and E as subvarieties in P_{2g-2} (respectively, in P_{2g-2}). The equations of Q and q are obtained in the following manner: The definition of P gives an isomorphism $\Theta: L_\xi \otimes iL_\xi \to K_\bar{C}$. We define a pairing $\langle \cdot, \cdot \rangle$ and its extension μ to the tensor product:

$$\langle \cdot, \cdot \rangle: \Gamma(L_\xi) \times \Gamma(L_\xi) \to \Gamma\left(\Omega_\bar{C}^g\right), \quad \langle s, t \rangle = \Phi(s \otimes it);$$

$$\mu: \Gamma(L_\xi) \otimes \Gamma(L_\xi) \to \Gamma\left(\Omega_\bar{C}^g\right), \quad \mu(s \otimes t) = \langle s, t \rangle.$$

Since $i^*\langle s, t \rangle = \langle t, s \rangle$, it follows that the restriction of μ to $\Lambda^g\Gamma(L_\xi)$ maps $\Lambda^g\Gamma(L_\xi)$ into $\Gamma\left(\Omega_\bar{C}^g\right)$. If s_1, s_2, \ldots, s_n is a basis of $\Gamma(L_\xi)$, the Q_ξ is given in P_{2g-2} by the equation

M. V. Lomonosov Moscow State University. Translated from Matematicheskie Zametki, Vol. 31, No. 4, pp. 593-600, April, 1982. Original article submitted April 15, 1980.
and \(q_\xi \) is given by the equation \(Pf(\mu(s_i \setminus s_j))_{i \leq j \leq n} \) (Pf is the Pfaffian of the matrix).

Definition. If \(Pf(\mu(s_i \setminus s_j)) \neq 0 \), then \(\xi \) is called a Pfaffian singularity.

We consider the case \(n = 4 \), i.e., where \(q_\xi \) is a quadric.

Lemma 1. Let \(\xi \) be a quadratic Pfaffian singularity of \(\mathbb{E} \). Suppose that \(q \) is the tangent cone to \(\xi \). Then the following statements are valid:

(i) \(q = \bigcup_{s \in \mathbb{R}^2} \langle \text{div}(s) \rangle \), where \(\tau_s \) is the linear subspace of \(P^{s-2} \), defined by the equations \(\mu(s \setminus t) = 0 \), where \(t \in \Gamma(L_0) \).

(ii) The center of \(q \) is determined by the equations

\[
\mu(s \setminus t) = 0, \quad s, t \in \Gamma(L_0).
\]

Proof. (i) \(q = Q \cap P^{s-2} \). We know that (see [3]) \(Q = \bigcup_{s \in \mathbb{R}^2} \langle \text{div}(s) \rangle \), \(\langle \cdot \rangle \) means the linear hull \(\langle \text{div}(s) \rangle \) is defined by the equation \(\langle s, t \rangle = 0 \), \(t \in \Gamma(L_0) \). Consequently, \(\tau_s = \langle s \setminus t \rangle \cap P^{s-2} \) is defined by the equations \(\mu(s \setminus t) = \langle s, t \rangle = \langle t, s \rangle \).

(ii) Let \(\omega_{ij} = \mu(s_i \setminus s_j) q \) be given by the equation

\[
Pf(\omega_{ij}) = \omega_{12} \omega_{24} - \omega_{15} \omega_{34} + \omega_{14} \omega_{23} = 0.
\]

\(\omega_{ij} \) are the equations of the center of \(q \).

By virtue of Lemma 1, it is more natural to seek a geometrical description of the dual quadric \(\bar{q} \subset \{K_0(a)\} \). Let us consider \(E = \mathbb{R}^2 \cap L_0 \). This is a bundle of rank 2 on \(\mathbb{C} \), and, as proved in [2], \(\det E = K_0(a) \). By definition, \(\Gamma(L_0) = \Gamma(E) \), so that \(\mu \) is decomposed into the composition

\[
\mu : P(\Lambda^2 \Gamma(E)) \to P(\Gamma(\Lambda^2 E)) \cong K_0(a).
\]

Hence \(\mu \) is linear. If \(\xi \) is a quadratic singularity, then \(\dim \Gamma(L_0) = 4 \), and \(\dim \Lambda^2 \Gamma(L_0) = 6 \). Let us set \(P(\Lambda^2 \Gamma(L_0)) = P^6 \), and suppose that \(G = \text{Gr}(1, 3) \subset P^6 \) is the Grassmannian variety of straight lines in \(P^3 = P(\Gamma(L_0)) \). Let \(W = \text{Sing} q \subset P^{s-2} = |K_0(a)| \). Then it follows from Lemma 1 that \(\mu \) maps \(P^3 \) onto \(W \). The Grassmannian variety \(G \) contains two systems of planes: \(\alpha \)-planes consisting of the straight lines passing through a given point, and \(\beta \)-planes consisting of the straight lines contained in a given plane. It follows from Lemma 1 that \(\tau_s = \mu(s) \), where \(\tau_s \) is the \(\alpha \)-plane corresponding to the section \(s \in \Gamma(L_0) \).

The following lemma is needed to compute the tangent cone dual to a quadric.

Lemma 2. Let \(q \) be a quadric and \(q \subset P^n \). Suppose that each maximal subspace \(E \subset q \) has a dual \(E^\perp \subset \mathbb{P}^n \).

Then the following statements are valid:

(i) If \(r(kq) \) is odd, then \(\bar{q} = \bigcup E^\perp, E \subset q \), and \(E \) is maximal.

(ii) If \(r(kq) \) is even, then either two irreducible families of the subspaces \(E^\perp \), or only one, pass through each point \(x \in \mathbb{P}^n \).

Proof. We can obviously assume that the quadric is nonsingular. Let \(r \) be the mapping

\[
r : q \to q, \quad r(x) = T_x q.
\]

It is clear that \(r(E) \subset E^\perp \) for each subspace \(E \subset q \). If \(r(kq) = 2k + 1 \), and \(E \) is maximal, then \(\dim E = k \) and \(\dim E^\perp = k \); whence \(r(E) = E^\perp \). The statement (i) is proved.

If \(r(kq) = 2k \) and \(E \) is a maximal subspace of \(q \), then \(\dim E = k - 1 \), and \(\dim E^\perp = k \), so that \(r(E) \subset E^\perp \). We take a point \(h \subset \mathbb{P}^n \), \(h \) is a hyperplane in \(P^n \) and \(h \) cuts from \(q \) either a nonsingular quadric of rank \(2k - 1 \) or a singular quadric of rank \(2k - 2 \). In both the cases \(q \cap h = \bigcup_{E \subset q} h \) and \(E \) is maximal in \(q \).

In the first case, \(h \) does not touch \(q \) and \(q \cap h \) has two systems of generators. Consequently, there are two irreducible systems of the subspaces \(E^\perp \). In the second case, \(h \) touches \(q \) and \(q \cap h \) has only one system of generators.