If \(h_{n-1} < h < h_n \), then, taking into account the monotonicity of \(\sigma(h) \) and \(\alpha(x,h) \) with respect to \(h \), we obtain that
\[
\frac{\alpha(X(t), h) \sigma(\Delta h/4 \log \log h)}{h} \leq \frac{\alpha(X(t), h_n) \sigma(\Delta h_n/4 \log \log h_n)}{h_n},
\]
from where there follows the assertion of the theorem.

The author is grateful to M. G. Shur for useful remarks.

LITERATURE CITED

ASYMPTOTIC EXPANSIONS FOR THE PROBABILITIES OF LARGE RUNS OF NONSTATIONARY GAUSSIAN PROCESSES

V. I. Piterbarg and I. É. Simonova

1. The problems of the estimation and the determination of the asymptotics of the distribution of the maximum and the minimum moduli of a Gaussian process has been repeatedly investigated by several authors (see [1]). In [2] one has found the asymptotic expansions for the distributions of the maximum of a stationary process with sufficiently smooth trajectories. In the present note we give an other approach for the solution of this problem. We consider the case of a nonstationary process with smooth trajectories in the neighborhood of the point of absolute maximum of the variance.

2. Let \(X(t), t \in (-\infty, +\infty) \), be a real Gaussian random process. We denote \(\mathcal{M} X(t) = m(t), \mathcal{M} (X(t) - m(t)) (X(s) - m(s)) = r(t,s), D(X(t) - X(s)) = d^2(t,s), r(t,t) = \sigma^2(t), r_{ij}(t,s) = \frac{\partial^{|i+j|}}{\partial t^i \partial s^j} r(t,s), i \geq 0, j \geq 0, p_{x,y} \ldots (x,y, \ldots) \) is the density of the vector \((X, Y, \ldots)\) at the point \((x, y, \ldots)\). We shall assume that the following conditions hold:

I. The least upper bound of the function \(\sigma(t) \) is attained at the unique point \(t_0, 0 \geq \sigma^{(a)}(t_0) > -\infty \) for some integer \(l > 0 \), \(\sigma^{(a)}(t_0) = 0 \) for \(r < 2l \) and \(\limsup_{t \to \infty} \sigma(t) < \sigma(t_0) \).

II. There exist an integer \(n \geq 2 \) and real \(a \geq 0, C < \infty \) and \(\delta > 0 \) such that on the segment \([t_0 - \delta, t_0 + \delta]\) there exists the \(n \)-th derivative \(X^{(n)}(t) \) in the mean square (m.s.) process \(X(t) \) and \(\mathcal{M} (X^{(n)}(t) - X^{(n)}(s))^2 \leq C |t - s|^a \), while if \(a = 0 \), then \(X^{(n)}(t) \) is continuous on \([t_0 - \delta, t_0 + \delta]\) in m.s.

III. \(DX'(t_0) \geq 0 \).

IV. The Dudley integral for the process \(\dot{X}(t) = X(t) - m(t) \) converges and \(m(t) \) is a function bounded from above.

We recall that by the Dudley integral we mean the integral
\[\Psi(\delta) = \int_0^\delta \ln N(\varepsilon)^{1/2} \, d\varepsilon, \]
where \(N(\varepsilon) \) is the power of the smallest \(\varepsilon \)-net in the pseudometric \(d(t, s) \) on the line \((-\infty, +\infty) \).

THEOREM. If the Gaussian process \(X(t) \) satisfies the condition I-IV, then
\[u^{1/2} \exp \left(\frac{u^2}{2\sigma^2(t_0)} \right) P \left(\sup_{t \in (-\infty, +\infty)} X(t) > u \right) = \sum_{k=0}^{n-2l} c_k u^{-k} + O(u^{-n+2l-\gamma}), \quad u \to \infty, \]
where the coefficients \(c_k, k \leq n - 2l \) depend only on the moments of the variables \(X^{(j)}(t_0), j \leq k + 2l \), they are defined below (Sec. 6), and if \(\alpha = 0 \), then \(O(\cdot) \) has to be replaced by \(o(\cdot) \).

In the case when \(m^{(k)}(t_0) = 0 \) for \(0 < k < n \), the form of the coefficients \(c_k \) is given by the relation (8).

In the case when \(m(t_0) = 0, l = 1 \) then
\[
c_0 = \frac{\gamma(t_0) \sigma^2(t_0)}{\sqrt{2\pi} \sigma_1(t_0)} \exp \left(-\frac{m'(t_0)^2}{2\sigma^2(t_0)} + \frac{m^2(t_0)}{2\sigma_1^2(t_0)} \right) \frac{\sigma(t_0) \gamma(t_0) \gamma'(t_0)}{2 \gamma(0)^{3/2}} \exp \left(-\frac{m'(t_0) \sigma^2(t_0)}{2 \gamma(0)} \right). \]

Here and in the sequel,
\[
\gamma^2(t) = r_{11}(t, t), \quad \mu(t) = (\gamma(t) \sigma(t))^{-1} r_{01}(t, t), \\
a_1(t) = (2\sigma^2(t)(1 - \mu^2(t)))^{-1}, \\
a_1(t_0) = -\frac{(\gamma^2(t_0))_{t=t_0}}{\sigma^2(t_0)} + \frac{(\mu'(t_0))^2}{\sigma^2(t_0)}. \]

3. We shall assume that \(t_0 = 0, \sigma(t_0) = 1 \). Then, the general case is obtained easily by a change of scale. The method of the derivation of the above given asymptotic expansion is based on the following inequalities:

\[
0 \leq P \left(\sup_{|t| \leq \Delta} X(t) \geq u \right) - P \left(\sup_{|t| \leq \Delta} X(t) \geq u \right) \leq \frac{1}{2} \left(\alpha_2(u) + \beta_2(u) \right) + P \left(\sup_{|t| \leq \Delta} X(t) \geq u, X(\Delta) \geq u \right), \quad \Delta > 0; \tag{1}
\]

\[
0 \leq \mathcal{N}_u \left[-\Delta, \Delta \right] + P \left(X(-\Delta) \geq u \right) - P \left(\max_{|t| \leq \Delta} X(t) \geq u \right) \leq \frac{1}{2} \left(\alpha_2(u) + \beta_2(u) \right) + P \left(X(-\Delta) \geq u, X(\Delta) \geq u \right), \tag{2}
\]

where \(\mathcal{N}_u = N_u \left[-\Delta, \Delta \right] \) is the number of the exits of the process \(X(t) \) beyond the level \(u \) on the segment \([-\Delta, \Delta] \), \(\alpha_2(u) = \mathcal{M}_u(N_u - 1), \beta_2(u) = \mathcal{M}_u(L_u - 1) \), \(L_u \) is the number of entries of the process under the level \(u \) on the segment \([-\Delta, \Delta] \) (see [3]).

From conditions I and III there follows that for sufficiently small \(\Delta \), the quantities \(\mathcal{M}_u, \alpha_2(u) \) and \(\beta_2(u) \) are finite. Indeed, by virtue of I,
\[
0 = (\sigma^2(t))' \big|_{t=0} = r_{i}(t, s) \big|_{t=i-s} + r_{r}(t, s) \big|_{t=r-s} = 2M\bar{X}(0)\bar{X}'(0),
\]
whence, taking into account III, it follows that the distribution of the vector \((X(t), X'(t)) \) is nondegenerate for \(t = 0 \) and thus, also in some \(\Delta \)-neighborhood of the point \(0 \). Consequently, [3],
\[
\mathcal{M}_u = \int_{-\Delta}^{\Delta} \int_0^\infty y^2 P_X(t, t)(u, y) \, dy \, dt < \infty.
\]

The finiteness of the quantities \(\alpha_2(u) \) and \(\beta_2(u) \) is proved in Sec. 5.

Inequalities (1) are obvious and inequalities (2) follow from the relations
\[
P \left(\max_{|t| \leq \Delta} X(t) \geq u \right) = P \left(X(-\Delta) \geq u \right) + P \left(X(-\Delta) < u, \max_{|t| \leq \Delta} X(t) \geq u \right),
\]