Over the principal ideal ring k, the Lie k-algebras which are free k-modules of finite rank are, to within isomorphism, the Lie subalgebras of the full matrix algebra $M(n, k)$.

The purpose of this paper is the extension to Lie algebras over principal ideal rings of the classical theorem of Ado on the representability of an arbitrary finite-dimensional Lie algebra over a field of characteristic zero by matrices over the same field. A Lie k-algebra which is representable as a submodule of the full matrix algebra $M(n, k)$ over the principal ideal ring k must be a free k-module of finite rank. It turns out that this condition is not only necessary but sufficient for the representability of a Lie k-algebra, if the characteristic of k is zero. The analog of Levi's theorem on the splitting off of the radical, which played an essential role in Harish-Chandra's proof of the classical theorem of Ado, is false for Lie algebras over rings. Nevertheless, the method of representation used in this paper practically coincides with the method of Harish-Chandra.

We fix the following notation: k is a principal ideal ring of characteristic zero, i.e., a commutative ring with identity with no zero divisors, which contains as a subring the ring of integers, and in which every ideal is generated by one element; F is the quotient field of k; L is a Lie k-algebra which is a free k-module of finite rank; R is the radical of L; N and $N(H)$ are the nil radicals of L and the algebra H; L^F is the completion of the algebra L over the field F; $\ast UH$ is the universal enveloping algebra of the Lie k-algebra H; $M(n, k)$ is the full matrix algebra over k of rank n^2; $NT(n, k)$ is the subalgebra of nil triangular matrices in $M(n, k)$; \mathcal{V} is the isolator of the submodule P in the module M, i.e., the complete inverse image in M of the torsion submodule in M/P; \oplus, \bigoplus are, respectively, the sum in the module and in the algebra.

In proofs, induction on the rank of the module L is frequently used; thus, we recall that

- a) the rank of L coincides with the dimension of the vector space $F \otimes_k L$ over the field F;
- b) the rank of a nontrivial direct summand of a free k-module of finite rank is less than the rank of the extended module.

The following proposition deals with the close connection between an algebra and its completion.

Proposition 1. (i) The derived (lower central) series of L^F is obtained by completion of the terms of the derived (lower central) series of L. In particular, L is solvable (nilpotent) if and only if L^F is solvable (nilpotent). (ii) The nil radical and radical of L are isolated, and their completions coincide respectively with the nil radical and radical of L^F. (iii) A solvable algebra L has an ideal H such that $L/H \cong k$; in particular, rank H is less than rank L.

Proof. (i) It is sufficient to show that $[A, B]^F = [A^F, B^F]$ for $A, B \subseteq L$. Since commutation in L^F is bilinear with respect to F, the equation is obvious. (ii) The completion of a nilpotent ideal in L is a $\ast L^F = F \otimes_k L$ is the tensor product of the k-modules F and L with the natural Lie F-algebra structure induced by L.
nilpotent ideal in the completion; therefore $N^F \subseteq N(L^F)$. On the other hand, $N(L^F) = (N(L^F) \cap L)^F \subseteq N^F$. In addition, $N = N^F \cap L$, and hence N is isolated. The assertion for the radical is proved analogously.

(iii) $\sqrt{[L, L]} \neq L$; otherwise, $[L^F, L^F] = L^F$, and L^F is not solvable. The ideal sought for will be, for example, the complete inverse image of a submodule with a cyclic complement in the quotient module $L/\sqrt{[L, L]}$.

Before formulating the theorem permitting a splittable extension of a representable algebra also to be represented by matrices with the aid of the given representation, we introduce the following.

Definition. The subalgebra P of the k-algebra L lies almost entirely in the submodule M, $M \subseteq L$, if there can be found a nonzero element $\alpha \in k$ satisfying the condition $\alpha P \subseteq M$.

Theorem 1. Let $L = H \oplus P$, where H is an ideal and P is a subalgebra of the Lie k-algebra L. Suppose that

1. there exist faithful representations $\rho: H \to M(r, k)$ and $\sigma: P \to M(s, k)$, where $N(H)^P \subseteq NT(r, k)$;
2. either $[H, P] \subseteq N(H)$, or P lies almost entirely in $R + H$.

Then the algebra L has a faithful representation $\tau: L \to M(t, k)$ such that $N(H)^T \subseteq NT(t, k)$.

Proof. We construct first a representation λ of the algebra L by endomorphisms of the infinite dimensional module UH. We set

$$ (h + p)^\lambda = R_h + D_p, $$

where $R_h: u \to uh$ is a right translation in the algebra UH, and D_p is the derivation in UH induced by the derivation $ad_H(p)$ in the Lie algebra H (cf. [1], p. 171). λ is a representation of the Lie algebra, since its restrictions to H and P are representations, and for $h \in H$, $p \in P$, and $u \in UH$,

$$ u(h^p p^h - p^h h^p) = u(R_h D_p - D_p R_h) = uR_{[h, p]} = u([h, p]^\lambda). $$

By the fundamental property of the universal enveloping algebra UH, there exists a ring homomorphism $\varphi: UH \to M(r, k)$ such that the diagram

$$ \begin{array}{ccc} H & \to & UH \\ \downarrow \sigma \downarrow \varphi \downarrow & & \downarrow \lambda \\ M(r, k) & \to & M(t, k) \end{array} $$

is commutative. Let K be the kernel of φ. Let us suppose that we have found an ideal I in UH with the properties: 1) $I \subseteq K$; 2) UH/I is a free k-module of finite rank; 3) I is invariant with respect to the action of the endomorphisms D_p, $p \in P$; 4) $N(H)^m \subseteq I$ for a suitable natural m. Then λ induces a representation $\bar{\lambda}$ on the quotient module UH/I, and τ, given on $L = H \oplus P$ by the formula

$$ \tau(h + p) = \left(\begin{array}{c} \bar{\lambda}(h + p) \vdots 0 \\ \vdots \vdots \vdots \\ 0 \vdots \sigma(p) \end{array} \right), \quad h \in H, \quad p \in P, $$

will be as desired. That τ is an isomorphism is easily verified; it is only necessary to show that there exists a basis of the module UH/I with respect to which $N(H)$ is represented under τ by nil triangular matrices. Using induction on the rank, it is sufficient to find a nonzero element in UH/I which generates an isolated submodule and is annihilated by every element in $N(H)$. By condition 4), there exists l such that $N(H)^l \subseteq I$, $N(H)^l \not\subseteq I$ (for $l = 0$ we set $N(H)^0 = UH$). Every element of $N(H)^l \setminus I$, modulo I, is different from zero, is annihilated by $N(H)$ under λ, and in the quotient UH/I, is contained in a cyclic isolated submodule which is also annihilated by $N(H)$.

Thus, it remains for us to find an ideal I with the properties 1)-4). Let G be the two-sided ideal in UH generated by all the elements of $N(H)$ under the natural imbedding $1: H \to UH$. Since $N(1) \subseteq H$, the equation $n h = h \cdot n + [n, h]$, $n \in N(H)$, $h \in H$, shows that G is generated as a left ideal by all products $n_1 n_2 \cdots n_r$, $n_i \in N(H)$, $i = 1, 2, \ldots, r$. Consequently, $G^* \subseteq K$. Let $I_1 = (G + K)^* \subseteq K$, and I/I_1 be the torsion submodule in UH/I_1. 1) $I_1 \subseteq K$, since $I_1 \subseteq K$ and UH/K is without k-torsion. 2) UH/I_1 is a finitely generated