CONCEPTS OF THE SELF-ADJOINTNESS OF A QUASI-ELLiptic OPERATOR

M. G. Gimadislamov

We prove the following theorem for the operator \(L = \sum_{k=1}^{n} (-1)^{m_k} D_k^{m_k} + q \) considered in \(L_2(\mathbb{R}^n) \) (the \(m_k \) are natural numbers): If \(q(x) > -C \max_k |x_k|^{1-1/2m_k} (C > 0) \) for sufficiently large \(|x| \), then \(L \) is a self-adjoint operator.

In the complex Hilbert space \(L_2(\mathbb{R}^n) \) we consider a quasi-elliptic operator of the form

\[
L = \sum_{k=1}^{n} (-1)^{m_k} D_k^{m_k} + q(x),
\]

where \(D_k^{m_k} = \frac{\partial^{2m_k}}{\partial x_k^{2m_k}} \), the \(m_k \) are natural numbers, and \(q(x) \) is a continuous function defined on \(\mathbb{R}^n \).

Lemma 1. For every \(q(x) \in C(\mathbb{R}^n) \) there is an infinitely differentiable function \(\tilde{q}(x) \in C^\infty(\mathbb{R}^n) \) such that \(|q(x) - \tilde{q}(x)| < 1 \) for all \(x \in \mathbb{R}^n \).

Proof. Suppose that the set of functions \(\{u_j(x)\} \) is a partition of unity, that is, each \(u_j(x) \) is concentrated in a cube \(K_j \) and belongs to the class \(C^\infty(\mathbb{R}^n) \), \(\sum_{j=1}^{\infty} u_j(x) = 1 \), and every point \(x \in \mathbb{R}^n \) belongs to at most \(N \) of the sets \(K_j \). Then \(q(x) = \sum_{j=1}^{\infty} q_j(x)u_j(x) = \sum_{j=1}^{\infty} q_j(x) \), where \(q_j(x) = q(x)u_j(x) \). For every \(q_j(x) \) we can find a \(\tilde{q}_j(x) \in C^\infty(\mathbb{R}^n) \) such that

1) \(|q_j(x) - \tilde{q}_j(x)| < 1/N \) for all \(x \in \mathbb{R}^n \),
2) \(\tilde{q}_j(x) \) is concentrated in \(K_j \).

We put

\[
\tilde{q}(x) = \sum_{j=1}^{\infty} \tilde{q}_j(x)
\]

(the series is convergent because for every \(x \) the sum contains not more than \(N \) nonzero summands). Then for every \(x \in \mathbb{R}^n \) we have

\[
|q(x) - \tilde{q}(x)| = \left| \sum_{j=1}^{\infty} (q_j(x) - \tilde{q}_j(x)) \right| < \sum_{j=1}^{\infty} |q_j(x) - \tilde{q}_j(x)|.
\]

The last sum contains not more than \(N \) nonzero summands, and they are all less than \(1/N \).

Therefore, \(|q(x) - \tilde{q}(x)| < N \cdot 1/N = 1 \).

Since a defect number is stable under bounded perturbations, we may further assume that \(q(x) \in C^\infty(\mathbb{R}^n) \).

Let \(L \) be the minimal operator generated by (1) in \(L_2(\mathbb{R}^n) \), and let \(L^* \) denote the adjoint of \(L \). We denote the domains of \(L \) and \(L^* \) by \(D_L \) and \(D_{L^*} \), respectively. Let \(L' \) be the re-
striction of \(L^* \) such that
\[
D_{L^*} = \{ u; \ u \in C^\infty(R^n) \cap L^2(R^n), \ l(u) \in L^2(R^n) \}.
\]
The following lemma holds.

Lemma 2. The adjoint operator \(L^* \) is the closure of its restriction to the set of infinitely differentiable functions \(u \in D_{L^*} \).

Proof. As is well known (see [1])
\[
D_{L^*} = D_L + N_i + N_{-i},
\]
where \(N_i \) and \(N_{-i} \) are defect subspaces of \(L \) that consist of the solutions of the equations \(L(u) = iu, \ L(u) = -iu \), respectively, that belong to \(L^2(R^n) \).

It is well known that if \(q(x) \) is infinitely differentiable, then the solutions of these equations are also infinitely differentiable (see [2]). We denote by \(L_0 \) an operator with the domain \(C^\infty(R^n) \), then the minimal operator \(L \) is the closure of \(L_0 \).

Let \(u \in D_{L^*} \); then by (2) we have \(u = u_0 + u(i) + u(-i) \), where \(u_0 \in D_{L^*}, \ u(i) \in N_i, \ u(-i) \in N_{-i} \), and \(L^*u = L_0u - iu(i) + iu(-i) \).

Since a minimal operator is the closure of an operator defined on a set of infinitely differentiable finite functions, there is a sequence \(\{u_n\} \) of infinitely differentiable finite functions \(u_n \) such that \(u_n \to u_0, \ L_0u_n \to L_0u \) as \(n \to \infty \). Then \(v_n = u_n + u(i) + u(-i) \to u, \ v_n \in D_{L^*} \) and
\[
L^*v_n = L^*(u + u(i) + u(-i)) = L_0u - iu(i) + iu(-i),
\]
\[
\lim_{n \to \infty} L^*v_n = L_0u - iu(i) + iu(-i) = L^*v.
\]
Thus, \(L^* \) is the closure of \(L' \).

It follows from Lemma 2 that to prove that \(L \) is self-adjoint it is sufficient to show that \(L' \) is symmetric on its domain.

By a layer \(P \) we mean the difference of two identically arranged rectangular parallelepipeds with edges parallel to the coordinate axes and with the center of symmetry at the origin. We denote by \(h_k \) the thickness of \(P \) in the direction of the \(x_k \) axis.

Lemma 3. Let \(\{P_\nu\} \) be an unboundedly extending sequence of disjoint layers of thickness \(h_\nu, k \) in the direction of the \(x_k \) axis. If the following relation holds for every \(u \in D_{L^*} \).
\[
\lim_{\nu \to \infty} \int_{P_\nu} h_{\nu, k}^{-2m_\nu} |D^4 u|^2 \, dx = 0 \quad (j \leq m_k, k = 1, \ldots, n),
\]
then \(L \) is self-adjoint.

Proof. We denote by \(K_\nu \) and \(K_{\nu+1} \), those parallelepipeds for which \(P_\nu = K_{\nu+1} \setminus K_\nu \). For each \(\nu \) we construct an infinitely differentiable function \(\psi_\nu(x) \) such that \(\psi_\nu(x) = 1 \) if \(x \in K_\nu, \psi_\nu(x) = 0 \) if \(x \notin K_{\nu+1}, 0 \leq \psi_\nu(x) \leq 1, \) and \(|D^k \psi_\nu| \leq C h_{\nu, k}^{-3} \), where \(C > 0 \). For \(\psi_\nu(x) \) we can take \(\prod_{k=1}^n \psi_{\nu, k}(x_k) \), where the \(\psi_{\nu, k}(x_k) \) are chosen in the same way as in the one-dimensional case (see [3]). We put \(\psi_\nu(x) = 1 - \psi_\nu(x) \).

We prove that the operator \(L' \) is symmetric. For any two functions \(u, v \in D_{L^*} \) we have
\[
(L'u, v) = (u, L'v) = (l(u\psi_\nu), v) - (u, l(v)) = (l(u\psi_\nu), v) + (l(u\psi_\nu), v) - (u, l(v)).
\]
The function \(u\psi_\nu \) is finite, therefore \(l(u\psi_\nu), v \to (u, l(v)) \to 0 \) as \(\nu \to \infty \). We only need to prove that
\[
\lim_{\nu \to \infty} (l(u\psi_\nu), v) = 0
\]
\[
(l(u\psi_\nu), v) = (\psi_\nu l(u), v) + \int_{P_\nu} \sum_{|\alpha|=4} \sum_{|\beta|=3} \sum_{j=1}^{2m_\nu} \sum_{i=1}^{2m_\nu} C_{\alpha, \beta, \sigma}^i D_{\nu, i}^{2m_\nu-\alpha-j} u D_{\nu, i}^{2m_\nu-\beta} v \, dx.
\]
Clearly, \((\psi_\nu l(u), v) \to 0 \) as \(\nu \to \infty \). We transform the second summand by integrating by parts, and estimate it by using the inequality \(2|ab| \leq a^2 + b^2 \); as a result we obtain

958