Thus, inequality (17) holds for any elements \(x, y \in K \) with nonzero images \(A_x \) and \(A_y \). Therefore, the operator \(A \) is focusing. By virtue of (2), (17) implies that
\[
\theta(A) \leq \frac{1+q}{1-q}.
\]

The last inequality together with (4) proves (6).

This completes the proof of Theorems 1 and 2.

The author is grateful to M. A. Krasnosel'ski for discussing the results of this article.

LITERATURE CITED

AXIOMATIC THEORY OF CONVEXITY

V. V. Tuz

UDC 513.5

The axiomatic construction of the theory of convexity proceeds from an arbitrary set \(M \) and a mapping \(\mathcal{L} : M^2 \to 2^M \), i.e., from a pair \((M, \mathcal{L})\). It is shown that such a space of a certain type is domain finite. A condition is given which, for such spaces, implies join-hull commutativity. A connection is established between the Carathéodory number and join-hull commutativity. Conditions are given which imply a separation property of the space \((M, \mathcal{L})\). Convexity spaces which are domain finite are characterized.

1. A convexity space of type 2 (abbreviated c.s. of type 2) is a set \(M \) together with a mapping \(\mathcal{L} : M \times M \to 2^M \) which satisfy the following axioms:
 1. \(\mathcal{L}(a, b) = \mathcal{L}(b, a) \),
 2. \(\mathcal{L}(a, a) = \{a\} \),
 3. \(\{a, b\} \subseteq \mathcal{L}(a, b) \) , if \(a \neq b \),
 4. \(c, d \subseteq \mathcal{L}(a, b) \Rightarrow \mathcal{L}(c, d) \subseteq \mathcal{L}(a, b) \).

 The elements of the set \(M \) are called points. The set \(\mathcal{L}(a, b) \) is called the segment joining the points \(a \) and \(b \).

 A nonempty subset \(Q \subseteq M \) is called \(\mathcal{L} \) convex if \(a, b \in Q \) implies \(\mathcal{L}(a, b) \subseteq Q \). The empty set is \(\mathcal{L} \) convex by definition.
Clearly, a one-element set, a segment, and M itself are L convex.

If \(\{Q_i\}_{i \in I} \) is a family of L convex sets, then it is easy to verify that \(\bigcap_{i \in I} Q_i \) is L convex. Suppose \(S \subseteq M \). By the L convex hull of \(S \), written \(\text{conv}_L(S) \), we mean the smallest L convex set containing \(S \). Clearly, \(\text{conv}_L(S) \) exists for any \(S \subseteq M \), and \(\text{conv}_L(S) = \bigcap \{ C : C \) is L convex, \(C \supseteq S \} \). It is obvious that \(\text{conv}_L(a, b) = L(a, b) \).

We define the dimension of a c.s. of type 2.

Definition. We say that \((M, L) \) is finite-dimensional if there exists a natural number \(n_0 \) such that if \(T = \{a_1, \ldots, a_m\} \) is a finite subset of \(M \), then
\[
\text{conv}_L(T) = \bigcup \{ \text{conv}_L(S) : S \subseteq T, |S| \leq n_0 + 1 \}.
\]
We then say that \((M, L) \) is at most \(n_0 \)-dimensional.

If \((M, L) \) is finite-dimensional, then we say that its dimension is exactly equal to \(n \) if it is at most \(n \) and \(n \) is the smallest natural number with this property.

Following D. C. Kay and E. W. Womble [1], a convexity structure for \(X \) is defined to be a family \(\mathcal{G} \) of subsets of \(X \) together with the pair \((X, \mathcal{G}) \), called a convexity space, if the following two conditions are satisfied:

a) \(\emptyset \) and \(X \) belong to \(\mathcal{G} \);

b) \(\bigcap \mathcal{F} \subseteq \mathcal{G} \) for each subfamily \(\mathcal{F} \subseteq \mathcal{G} \).

If c) \(\{x\} \subseteq \mathcal{G} \) for each \(x \in X \) then \(\mathcal{G} \) is called \(T_1 \).

By the hull operator corresponding to the convexity structure \(\mathcal{G} \) we mean the operator
\[
\mathcal{G}(S) = \bigcap \{ C : C \subseteq \mathcal{G}, C \supseteq S \}, S \subseteq X.
\]

It is easy to see that it possesses the following properties:

1) \(S \subseteq \mathcal{G}(S) \) for \(S \subseteq X \); ii) if \(S_1 \subseteq S_2 \) then \(\mathcal{G}(S_1) \subseteq \mathcal{G}(S_2) \); iii) \(\mathcal{G}(\mathcal{G}(S)) = \mathcal{G}(S) \); iv) if \(\mathcal{G}(S) = S \), then \(S \subseteq \mathcal{G} \).

The set \(\mathcal{G}(S) \) is called the \(\mathcal{G} \) hull of \(S \), and \(S \) is called \(\mathcal{G} \) convex if \(\mathcal{G}(S) = S \).

If \(\mathcal{G}(S) = \bigcup \{ \mathcal{G}(T), T \subseteq S, |T| < \infty \} \) for each \(S \subseteq X \), then the convexity structure is called domain finite.

A convexity structure \(\mathcal{G} \) has Carathéodory number \(c \) if \(c \) is the smallest natural number with the following property: the \(\mathcal{G} \) hull of any set \(S \subseteq X \) is the union of the \(\mathcal{G} \) hulls of those subsets \(S \) for which \(|T| \leq c \). Also, a convexity structure has Helly number \(h \) if \(h \) is the smallest natural number such that a finite subfamily \(\mathcal{F} \) of sets in \(\mathcal{G} \) has nonempty intersection if each \(h \) members of \(\mathcal{F} \) have nonempty intersection, and Radon number \(r \) if \(r \) is the smallest natural number such that any set \(S \), \(|S| \geq r \), has a Radon partition, that is, can be partitioned into two nonempty subsets \((S_1, S_2) \) such that \(\mathcal{G}(S_1) \cap \mathcal{G}(S_2) \neq \emptyset \).

If \(\mathcal{G} \) is the family of convex sets in Euclidean space \(\mathbb{E}^d \) of dimension \(d \), then the classical theorems of Carathéodory, Helly, and Radon show that \(\mathcal{G} \) has \(c = h = d + 1 \) and \(r = d + 2 \).

If \((M, L) \) is a c.s. of type 2, then it is easy to see that it is a \(T_1 \) convexity structure. Moreover, as we will now show, it is domain finite.

THEOREM 1. If \((M, L) \) is a c.s. of type 2, then it is domain finite.

Proof. We must show that for any \(S \subseteq M \),
\[
\text{conv}_L(S) = \bigcup \{ \text{conv}_L(T) : T \subseteq S, |T| < \infty \}.
\]
We will establish two inclusions:

1. \(\bigcup \{ \text{conv}_L(T) : T \subseteq S, |T| < \infty \} \subseteq \text{conv}_L(S) \).
2. \(\text{conv}_L(S) \subseteq \bigcup \{ \text{conv}_L(T) : T \subseteq S, |T| < \infty \} \).

The first is obvious. To prove the second it suffices to show that \(C = \bigcup \{ \text{conv}_L(T) : T \subseteq S, |T| < \infty \} \) is \(L \) convex and that \(C \supseteq S \). It is easy to see that \(C \supseteq S \) is \(L \) convex. Suppose \(a, b \in C \). Then \(a \in \text{conv}_L(T_1), T_1 \subseteq S, |T_1| < \infty \) and \(b \in \text{conv}_L(T_2), T_2 \subseteq S, |T_2| < \infty \). Consider \(\text{conv}_L(T_1 \cup T_2) \). Clearly, \(T_1 \cup T_2 \subseteq S, |T_1 \cup T_2| < \infty \). It is also obvious that \(a, b \in \text{conv}_L(T_1 \cup T_2) \). Therefore, \(a, b \in C \).