ON UPPER AND LOWER VALUES OF A GENERALIZED FUNCTION AT A POINT

Yu. P. Chuburin

UDC 517.5

In this paper we introduce, for generalized functions of $D'(\mathbb{R}_1)$, the concepts of functions of upper and lower values, and we give a complete description of them for generalized functions belonging locally to L_∞.

Let Ω be the class of all nonnegative functions $s(t)$ of $D(\mathbb{R}_1)$ for which

$$\int_{-\infty}^{\infty} s(t) dt = 1.$$

As usual, by a δ-shaped sequence $\{s_n(t)\}$ at a point t we shall understand a sequence of functions of Ω with supports which contract to the point t.

Definition. We say that the number $\gamma(t)$ is a value of the generalized function $f \in D'$ at the point t if there exists a δ-shaped sequence $\{s_n(t)\}$ at the point t such that

$$\lim_{n \to \infty} \langle f, s_n(t) \rangle = \gamma(t).$$

The upper bound of values of f at the point t is called the upper value of f at the point t and denoted by $\gamma(t)$; the lower bound is called the lower value and denoted by $\alpha(t)$.

The following assertions are readily established:

Proposition 1. The quantities $\alpha(t)$ and $\beta(t)$ are values of the generalized function $f \in D'$ at the point t. If $\alpha(t)$ and $\beta(t)$ are finite, then the set of values of f at the point t coincide with the interval $[\alpha(t), \beta(t)]$.

Proposition 2. A function of the upper (lower) value $\beta(t)$ ($\alpha(t)$) is upper semicontinuous (lower semicontinuous).

Lemma 1. An arbitrary function $s \in \Omega$ satisfies the inequality

$$\inf_{\text{supp } s} \alpha(t) \leq \langle f, s \rangle \leq \sup_{\text{supp } s} \beta(t).$$

Proof. Assume the contrary to be so. Suppose, for definiteness, that

$$\langle f, s \rangle > \sup_{\text{supp } s} \beta(t) + \varepsilon, \varepsilon > 0.$$

We cover the $\text{supp } s$ with a finite number of neighborhoods u_i. Let $\{\varphi_i\}$ be an expansion of unity corresponding to the covering $\{u_i\}$. Then

$$s(t) = \sum_i s(t) \varphi_i(t) = \sum_i \int_{-\infty}^{\infty} s(t) \varphi_i(t) dt \frac{s(t) \varphi_i(t)}{\int_{-\infty}^{\infty} s(t) \varphi_i(t) dt}.$$

If we denote $\frac{s(t) \varphi_i(t)}{\int_{-\infty}^{\infty} s(t) \varphi_i(t) dt}$ by $s_i(t)$, then for some function $s_i(t)$ we have

$$\langle f, s_i \rangle > \sup_{\text{supp } s} \beta(t) + \varepsilon,$$

since otherwise we would have

\[\langle f, s \rangle = \sum_{n=-\infty}^{\infty} s(t)q_n(t)dt \leq (\sup_{\text{supp } s} \beta(t) + \varepsilon) \sum_{n=-\infty}^{\infty} s(t)q_n(t)dt = \sup_{\text{supp } s} \beta(t) + \varepsilon, \]

counter to our assumption. Taking a sequence of refined coverings, we obtain a sequence of functions \(\{s_n\} \) such that \(\langle f, s_n \rangle \leq \sup_{\text{supp } s} \beta(t) + \varepsilon, \) \(\text{supp } s_n \subseteq \text{supp } s \) and the diameter of \(\text{supp } s_n \) tends to zero. From it we may select a \(\delta \)-shaped sequence at some point \(t_0 \in \text{supp } s \). Then \(\beta(t_0) \geq \sup_{\text{supp } s} \beta(t) + \varepsilon, \) which is not possible.

THEOREM 1. Let us assume that \(f \in D' \), that \(G \) is an open set, and that \(\alpha = \inf_{G} \alpha(t), \beta = \sup_{G} \beta(t). \) The restriction of \(f \) on the set \(G \) belongs to \(L^\infty(G) \) if and only if \(\alpha \) and \(\beta \) are finite, wherein \(||f||_{L^\infty(G)} = \max \{||\alpha||, ||\beta||\}. \)

Proof. Necessity. For an arbitrary function \(s \in \Omega \) with support in \(G \)

\[|\langle f, s \rangle| \leq ||f||_{L^\infty(G)} ||s||_{L^1(G)} = ||f||_{L^1(G)}. \]

It follows from this that

\[|\alpha|, |\beta| \leq ||f||_{L^1(G)}. \quad (1) \]

Sufficiency. We consider the function

\[\theta_{\alpha}(t) = \begin{cases} ke^{-\frac{t^2}{\alpha^2}}, & |t| \leq \alpha, \\ 0, & |t| > \alpha, \end{cases} \]

where \(k \) is a normalizing factor. Suppose that \(\varphi \in D(G) \). We introduce the function

\[q_{\alpha} = \varphi * \theta_{\alpha} = \varphi^+ * \theta_{\alpha} - \varphi^- * \theta_{\alpha}, \]

where \(\varphi^+ \) and \(\varphi^- \) are the positive and negative components of \(\varphi \). For a sufficiently small, \(\text{supp } \varphi_{\alpha} \subseteq G \), and

\[\langle f, \varphi \rangle = \lim_{\alpha \to 0} \langle f, \varphi_{\alpha} \rangle = \lim_{\alpha \to 0} \langle f, \varphi_{\alpha}^+ \rangle - \langle f, \varphi_{\alpha}^- \rangle, \]

where \(\varphi_{\alpha}^+ = \varphi^+ * \theta_{\alpha}, \varphi_{\alpha}^- = \varphi^- * \theta_{\alpha} \). From Lemma 1 it follows that

\[\alpha \int_{-\infty}^{\infty} q_{\alpha}^+(t)dt \leq \langle f, q_{\alpha}^+ \rangle \leq \beta \int_{-\infty}^{\infty} q_{\alpha}^+(t)dt, \]

\[-\beta \int_{-\infty}^{\infty} q_{\alpha}^-(t)dt \leq -\langle f, q_{\alpha}^- \rangle \leq -\alpha \int_{-\infty}^{\infty} q_{\alpha}^-(t)dt. \]

Combining the inequalities and passing in them to the limit, we obtain as the final result

\[|\langle f, \varphi \rangle| \leq \max \{|\alpha|, |\beta|\} \int_{-\infty}^{\infty} |q(t)|dt. \]

Thus the restriction of \(f \) on \(G \) generates a functional continuous in the norm of \(L^1(G) \); consequently, it coincides with a function of \(L^\infty(G) \); moreover

\[||f||_{L^\infty(G)} \leq \max \{|\alpha|, |\beta|\}. \quad (2) \]

From inequalities (1) and (2) it follows that \(||f||_{L^\infty(G)} = \max \{|\alpha|, |\beta|\}. \)

COROLLARY. If \(\alpha(t_0) \) and \(\beta(t_0) \) are finite, then in a neighborhood of \(t_0 \) the generalized function belongs to \(L^\infty \). This follows from the fact that in some \(t_0 \) neighborhood \(\alpha(t) \) and \(\beta(t) \) are bounded by virtue of their semicontinuity.

S. Loyasevich (see [1]) gave a definition for the value of a generalized function at a point. It is not hard to see that if a generalized function is such that

\[\alpha(t_0) = \beta(t_0), \]

then the value of the generalized function at the point \(t_0 \) in the Loyasevich sense is equal to this number. The converse is, in general, not true.

THEOREM 2. Suppose that the generalized function \(f \) belongs to \(L^\infty \) locally on an open set \(G \) and let