The author thanks E. M. Semenov for stating the problem and for his attention to this paper.

LITERATURE CITED

NORMED SPACES WHICH SATISFY APOLLONIUS' THEOREM

I. A. Danelich

It is proved that a normed space is a Hilbert space if it possesses the property: The geometric locus of the points, for which the ratio of the distances to two given points is constant, is a sphere.

In May 1967, at the Second All-Union Symposium on Integral Geometry, held in Petrozavodsk, S. B. Stechkin posed the following problem: Is a Banach space a Hilbert space if it possesses the property: a) The geometric locus of the points, for which the ratio of the distances to two given points is constant, is a sphere [1]?

To this question we give an affirmative answer.

THEOREM. A normed linear space \(B \) which possesses property a) is a Hilbert space.

For the proof of the theorem it is sufficient to show that in \(B \) one can introduce an inner product which induces the given norm. First we prove this for a real \(B \). To this end, by virtue of Ficken's theorem (see [2, p. 193]), it is sufficient to prove that from property a) the following lemma is obtained.

LEMMA. Let \(a, b \in B, \|a\| = \|b\| = 1 \). Then for any real number we have the equality

\[\|b + xa\| = \|ab + a\|. \]

Proof. Let \(0 < a < 1, \|a\| = 1 \). Then

\[\|a - \frac{a}{a}a\| = \|a - \frac{a}{a}a\| = a. \] (1)

By virtue of property a)
where $S(c, R)$ is the sphere in B with center at c and radius $R > 0$.

Let us prove that $c = 0$. We assume the opposite, i.e., that $c \neq 0$. By virtue of (1), we have

$$\pm a \in S(c, R) \iff \|c \pm a\| = R. \quad (2)$$

Let $x \in S(0, R)$. Then $x + c \in S(c, R)$, and consequently,

$$\|x + c - \alpha a\| = \alpha \|x + c - \frac{1}{\alpha} a\| = \|x + \alpha c - a\|.\quad (3)$$

But

$$\bigcup_{x \in S(0, R)} (x + c - \alpha a) = S(c - \alpha a, R),$$

$$\bigcup_{x \in S(0, R)} (\alpha x + \alpha c - x) = S(\alpha c - a, \alpha R).$$

The spheres $S(c - \alpha a, R)$ and $S(\alpha c - a, \alpha R)$ are homothetic (the homothety center is $p = -(1 + \alpha) a$, the coefficient is $k = \alpha$): $\|p - c \div \alpha a\| = \|c - a\| = R$ (by virtue of (2)). Thus, $p \in S(c - \alpha a, R)$. In addition,

$$S(\alpha c - a, \alpha R) \subset \{x \|x - c + \alpha a\| \leq R\}.$$

Clearly, c and α are linearly independent. Indeed, let us assume the opposite, i.e., that $c = \lambda \alpha$. Then

$$\|\lambda a - a\| = \|\lambda a + a\| = R.$$

From here $|\lambda - 1| = |\lambda + 1| \iff \lambda = 0$, which contradicts the assumption $c \neq 0$.

Let B_2 be the two-dimensional subspace spanned by α and c. Then

$$S(0, R) \cap B_2 = S_2(0, R), \quad S(c - \alpha a, R) \cap B_2 = S_2(c - \alpha a, R),$$

$$S(\alpha c - a, \alpha R) \cap B_2 = S_2(\alpha c - a, \alpha R),$$

where $S_2(\ast)$ are the appropriate spheres in B_2.

In the sequel we shall denote the line

$$\{x \mid x = a + (b - a) t, \ -\infty \leq t \leq \infty\} = (a, b),$$

the segment

$$\{x \mid x = tb + (1 - t)a, \ 0 \leq t \leq 1\} = [a, b].$$

Equation (3) has the following geometric meaning: Let $H_{p, a}$ be a homothety in B_2 with center at p and coefficient $\alpha, m \in S_2(c - \alpha a, R) \{0 \cup p\}, A(m) = Rm/\|m\|$. Then the lines $(m, A(m), A(H_{p, a}(m)))$ are parallel and

$$A(m), A(H_{p, a}(m)) \in S_2(0, R), H_{p, a}(m) \in S_2(\alpha c - a, \alpha R).$$

Let us prove that the line $(-a, a)$ is not supporting for $S_2(c - \alpha a, R)$. We assume the opposite. Then $S_2(c - \alpha a, R) \cap (-a, a) = [p_1, p_2]$ is a segment with the endpoints p_1 and p_2 (possibly, $p_1 = p_2 = p$). If $p_1 \neq p_2$, then we take $m \in S_2(c - \alpha a, R) \{p_1, p_2\}$. The points $m \mapsto p_1, m$ are situated on the given side of p_1. Then the line

$$(p, m) \rightarrow (-a, a), \quad A(m) \rightarrow A(p),$$

$$A(H_{p, a}(m)) \rightarrow A(p), \quad A(m) \neq A(H_{p, a}(m)).$$

Therefore the line $(A(m), A(H_{p, a}(m)))$ converges to the supporting line to $S_2(0, R)$ at the point $A(p)$. But

$$(A(m), A(H_{p, a}(m))) \parallel (p, m).$$

Thus, $(-a, a)$ is a supporting line to $S_2(0, R)$, which is not possible since this line passes through the center 0. If $p_1 = p_2 = p$, then the argument is similar. In this case, when $m \rightarrow p$, then on one hand the line $(p, m) \rightarrow Z_1(p)$, on the other hand $(p, m) \rightarrow Z_2(p)$,