This corollary follows from Theorems 1 and 2 since \(1 \leq \sup DS_{f(x),\zeta}(x) \leq \sup DS_{f(x)}(x) \leq 1. \)

COROLLARY 2. Let \(x = \mu \{ \varepsilon^{-1}(x) \} \), the function \(\omega \) be uniformly differentiable at the point \(x \) along each direction from a set \(U(x) \), \(U'(x) \) and \(T(x) \subseteq U(x) \). Then \(\sup_{i \in T(x)} \omega'(x, i) = \omega'(x, T(x)) = 1. \)

This corollary follows from Corollary 1 and the definition of uniform differentiability along a direction.

LITERATURE CITED

UNCOUNTABLE R-SETS AND N-SETS

N. N. Kholshchevnikova

In this note, we consider problems on whether certain subsets of the real line belong to the classes of R-sets and N-sets. These problems turn out to be unsolvable in the usual ZFS (Zermelo-Frenkel) system of axioms of set theory.

Let us recall the definitions of R-sets and N-sets.

A subset \(E \) of \([0, 1]\) is called an R-set if there exists a trigonometric series

\[
\sum_{n=1}^{\infty} a_n \cos 2\pi n x + b_n \sin 2\pi n x,
\]

that is convergent in \(E \) and whose coefficients do not converge to zero.

A subset \(E \) of \([0, 1]\) is called an N-set if there exists a series of the form (1) that is absolutely convergent in \(E \) and is such that the sum of the moduli of its coefficients is divergent. If a set is not an N-set, then it is called an A.C.-set.

We know [1, pp. 173, 174, 736, 737, 747] that R-sets and N-sets of measure zero and of first category and that each countable set is an R-set as well as an N-set.

Can it be asserted that each set of cardinality less than the continuum \(\mathfrak{c} \) is an R-set and an N-set? This problem turns out to be unsolvable in ZFS. It is interesting that the analogous problem for U-sets (a set \(E \) is called a set of uniqueness or a U-set if each trigonometric series that converges to zero outside \(E \) vanishes identically) has an affirmative solution: Each set of cardinality less than \(\mathfrak{c} \) is a U-set (see [2], [3]).

Under the continuum hypothesis CH, each set of cardinality less than \(\mathfrak{c} \) is a countable set and is, consequently, an R-set as well as an N-set. But the situation is nonunique under negation of CH. On one hand, Hechler [4] has proved the consistency of the statement on the existence of a set of the real line of cardinality less than \(\mathfrak{c} \) that is not of first category with ZFS. Such a subset of \([0, 1]\) is neither an R-set nor an N-set. (Let us observe that the unsolvability of the following problems in ZFS follows from here: Is it necessary that each A.C.-set that is not an R-set has cardinality \(\mathfrak{c} \) (?). On the other hand, we prove that each set of cardinality less than \(\mathfrak{c} \) is an R-set as well as an N-set under the Martin axiom (an additional set-theoretical axiom, consistent with ZFS). In this note we also prove that the union of an N-set and a set of cardinality less than \(\mathfrak{c} \) is an N-set under the Martin axiom.
The Martin axiom (see [5] and [6] is a nontrivial generalization of CH and is consistent
with the negation of CH. We require a series of definitions for the formulation of this axiom.

Let $\mathcal{P} = \langle P, \leq \rangle$ be a partially ordered set. Two elements p and q of \mathcal{P} are said to be
compatible if there exists $r \in P$ such that $r \leq p$ and $r \leq q$ in the contrary case, these
elements are said to be incompatible. If each subset of \mathcal{P}, that consists of pairwise incompati-
bile elements is countable, then \mathcal{P} is said to satisfy the Suslin conditions. A subset \mathcal{D} of \mathcal{P}
is said to be dense in \mathcal{P}, if for each $p \in \mathcal{P}$ there exists a $d \in \mathcal{D}$ such that $d \leq p$.

The Martin Axiom MA. Let \mathcal{P} be a partially ordered set that satisfies the Suslin condi-
tion. If \mathcal{F} is a family of dense subsets of \mathcal{P} and the cardinality of \mathcal{F} is less than \aleph_1
then there exists an \mathcal{F}-generic subset G of \mathcal{P} i.e., a set G that satisfies the following condi-
tions:

1) $F \cap G \neq \emptyset$ for any $F \in \mathcal{F}$;
2) For arbitrary g and g' from G there exists an element $r \in G$ such that $r \leq g$, and
 $r \leq g'$;
3) If $g \in G$ and $g' \geq g$, then $g' \in G$.

Let us observe that the conditions of the Martin axiom are fulfilled under CH, i.e., MA
becomes a theorem under CH.

In the sequel we will need the following definition and statements.

A subset E of $[0, 1]$ is called an N_0-set if there exists a sequence of integers (n_k)
such that the series $\sum_{k=1}^{\infty} \sin n_k x$ is absolutely convergent in E.

We know [1, pp. 737 and 757] that each set of type N_0 is also an R-set as well as an
N-set. The following lemma has been proved in [1, p. 737].

Lemma 1. Let $\epsilon_n \to 0$ and suppose that E has the following property: There exists a
sequence of integers n_k such that for each $x \in E$ there exists a k_x (depending on x) such
that $|(\epsilon_n x)| < \epsilon_k$ for $k > k_x$ (here $\{t\} = t - v$, where v is the integer nearest to t). Then E
is an N_0-set and is, therefore, an R-set as well as an N-set.

We also need the following theorem (see [1, p. 903] and also [2]) and a corollary of it
[1, p. 904].

The Dirichlet-Minkowski Theorem. Let t_1, t_2, \ldots, t_v be arbitrary numbers. For arbitrary
A there exist an integer $q > A$ and integers p_1, p_2, \ldots, p_v, such that
$$|t_i - p_i/q| < 1/q^{1+v} \quad (i = 1, 2, \ldots, v).$$

Hence
$$|\{q t_i\}| < q^{-v} \quad (i = 1, 2, \ldots, v).$$

Corollary of the Dirichlet-Minkowski Theorem: For arbitrary real numbers t_1, t_2, \ldots, t_v
and for arbitrary $\epsilon > 0$ there exists an integer $\lambda > 1$, such that
$$|\{\lambda t_i\}| < 2\epsilon \quad (i = 1, 2, \ldots, v) \text{and} \lambda \leq e^{-v}.$$

We will use the following notation. The cardinality of a set A will be denoted by $|A|$.
The letter N will denote the set of natural numbers.

Now we can prove the following theorem.

Theorem 1 [MA]. Each subset of cardinality less than \aleph_1 of the segment $[0, 1]$ is an
N_0-set and is therefore an R-set as well as an N-set.

Proof. Let A be a subset of $[0, 1]$ of cardinality less than \aleph_1 and $\{\epsilon_n\}$ be a sequence
of positive numbers that converges to zero. Let us consider the set P whose elements are
the ordered pairs of finite subsets of A and N, i.e.,
$$P = \{\langle A, K \rangle | A \subseteq A, K \subseteq N, A \text{and } K \text{ are finite}\}.$$

Let us order P in the following manner: Let $p_1 = \langle A_1, K_1 \rangle$ and $p_2 = \langle A_2, K_2 \rangle$; set $p_1 \gg p_2$, if and only if 1) $A_1 \subseteq A_2$, and $K_1 \subseteq K_2$; 2) if $K_2 \setminus K_1 \neq \emptyset$, then, writing down the elements of
K_1 and K_2 in increasing order, we get

This means that the theorem is proved under the Martin axiom.