INFLUENCE OF DEFORMATION OF THE BOUNDARY ON CERTAIN CONFORMAL PROPERTIES OR REGIONS (REGIONS IN V. I. SMIRNOV'S CLASS S)

G. Ts. Tumarkin

The influence of deformation of the boundary of a region on its belonging to V. I. Smirnov's class S is investigated.

V. I. Smirnov [1, 2] and M. V. Keldysh and M. A. Lavrent'ev [3] have proved that many problems concerning boundary properties of analytic functions in regions G with a rectifiable Jordan boundary γ, and also problems concerning the approximation by polynomials on γ, are related to whether G satisfies V. I. Smirnov's condition. This condition is as follows: let $z = \varphi(w)$ map $|w| < 1$ conformally on G. Then we say that G satisfies V. I. Smirnov's condition if $\ln |\varphi'(w)|$ can be represented in the disk $|w| < 1$ by the Poisson-Lebesgue integral:

$$\ln |\varphi'(re^{i\theta})| = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - \phi) + r^2} \ln |\varphi'(e^{i\phi})| d\phi.$$

(1)

The class of such regions will be denoted by S. We note that the condition that G be a Jordan region with a rectifiable boundary implies that $\varphi'(w)$ is in the class Π_1, and so $\ln |\varphi'(w)|$ can be expressed by the Poisson-Stieltjes integral. M. V. Keldysh and M. A. Lavrent'ev [3] have constructed a remarkable example of a region with a rectifiable Jordan boundary which does not belong to S (see [5], p. 229). New examples of this type are also given in [4]. Since the formulation of many results are much simpler for regions G of S than for regions $G \notin S$ (see [5], p. 238), it is desirable to have a rather general criterion for a region's belonging to S. Criteria directly related to the geometrical properties of the boundary γ of G would be particularly interesting. Conditions of this type are discussed in works by V. I. Smirnov, M. V. Keldysh, M. A. Lavrent'ev, the author [6], and G. Shapiro [7].

In the present work we study the relation between deformations of the boundary γ of the region G and the property that the region belongs to V. I. Smirnov's class S. Here we consider only "internal" deformations, in which a countable number of arcs γ_k of the boundary γ of G are replaced by arcs $\tilde{\gamma}_k$ with the same ends as γ_k, but located entirely inside G. We prove that, if G is in S, then any region $\tilde{G} \subseteq G$, obtained by "internal" deformations of γ by "good" (Smirnov) arcs is also in S. On the other hand if G is not in S, there is a set E_0 of measure zero on γ such that, if we take any open set $O \supseteq E_0$ and carry out the internal deformation process described above for the arcs γ_k forming O to obtain arcs $\tilde{\gamma}_k$, then the resulting region \tilde{G} will belong to S. It is of course of interest to consider not only "internal" but also "external" deformations of γ. In the present state of knowledge, however, this would be a very laborious task.

*We use the term Smirnov arc for an arc which can be closed by an auxiliary arc to form a region in S (for more details see [6]). It follows from known results that arcs Γ with any one of the following properties possess the above property: 1) Γ is smooth; 2) Γ is of finite rotation; 3) the ratio of the length of any arc $\gamma \subset \Gamma$ to the length of the chord is bounded. We will use the same symbol S to denote the class of Smirnov arcs.

THEOREM 1. Let $G \subset S$. Then every subregion $\tilde{G} \subset G$ with a rectifiable Jordan boundary, possessing the property that every part of its boundary $\tilde{\gamma}$ in the interior of G consists of Smirnov arcs $\tilde{\gamma}_k$:

$$\tilde{\gamma} \cap G = \bigcup_{k} \tilde{\gamma}_k \subset S,$$

is also in the class S.

Proof. Let \tilde{D} be the subregion of the disk $|\tilde{w}| < 1$, corresponding to \tilde{G} under the mapping $z = \varphi(\tilde{w})$, and let $\tilde{\omega} = \omega(w)$ map $|w| < 1$ conformally onto \tilde{D}. Then $z = \varphi(\omega(w))$ maps $|w| < 1$ conformally onto \tilde{G}.

Letting $z = \varphi(\omega(w)) = \varphi(w)$:

$$\ln |\varphi'(w)| = \ln |\varphi'| \omega(w)| + \ln |\omega'(w)|$$

(2)

We will have proved that \tilde{G} belongs to S if we establish that each of the terms on the right in (2) can be represented by a Poisson-Lebesgue integral. For the function $\ln |\varphi'| \omega(w)|$, this is a direct consequence of the following considerations. The function $\ln |\varphi'|(w)|$ can be expressed in $|w| < 1$ by a Poisson-Lebesgue integral, since $G \subset S$. But it is known that if a harmonic function can be expressed by a Green's integral in a region, then it possesses the same property in a subregion (see [2]). Thus $\ln |\varphi'|(w)|$ can be represented in \tilde{D} by a Green's integral. Using the fact that representability by Green's formula is conformally invariant, we conclude that $\ln |\varphi'| \omega(w)|$ can be represented by the Poisson-Lebesgue formula in $|w| < 1$.

It remains to verify that $\ln |\omega'(w)|$ can be represented by a Poisson-Lebesgue integral in $|w| < 1$.

Assume the contrary. The function $\ln |\omega'(w)|$ is, in view of (2), equal to the difference of two harmonic functions. The function $\ln |\varphi'(w)|$ can plainly be expressed by a Poisson-Stieltjes integral

$$\ln |\varphi'(w)| = \int \frac{1}{2\pi} \sum_{\theta} \frac{1}{1 + r^2 - 2r \cos (\theta - \omega)} d\mu(\theta)$$

with a function $\mu(\theta)$ whose singular component $\mu_S(\theta)$ is an increasing function:

$$d\mu(\theta) = d\mu_\alpha(\theta) + d\mu_\beta(\theta) = \mu^* (\theta) d\theta + d\mu_\beta(\theta)$$

$$d\mu_\beta(\theta) \leq 0$$

(see [5], p. 220). Since we have proved that $\ln |\varphi| \omega(w)|$ can be represented by a Poisson-Lebesgue integral, the function $\ln |\omega'(w)|$ can be represented by a Poisson Stieltjes integral:

$$\ln |\omega'(w)| = \int \frac{1}{2\pi} \sum_{\theta} \frac{1}{1 + r^2 - 2r \cos (\theta - \omega)} d\nu(\theta)$$

(3)

and $d\nu_S(\theta) = d\mu_S(\theta) \leq 0$. Suppose that $d\mu_S \neq 0$. It is proved in [6] that there are no points of increase of the singular component $d\nu_S(\theta)$ on arcs $\tilde{\gamma}_k$ of the circle $|w| = 1$, corresponding by the conformal mapping $z = \varphi(w)$ to Smirnov arcs $\tilde{\gamma}_k$. Hence the support of the measure $d\nu_S(\theta)$ must lie on the set of points of $|w| = 1$, corresponding under the conformal mapping to points of $\tilde{\gamma}$, and so to points \tilde{w} with $|\tilde{w}| = 1$ for the mapping $\tilde{w} = \omega(w)$. If $d\nu_S(\theta) = 0$, then De la Vallée-Poussin's theorem ([8], p. 195) implies that there is a point $\Theta(\theta)$ such that $\nu^* (\Theta) = -\infty$. Then $\nu^* (\Theta)$ tends to Θ we obtain

$$\lim |\omega'(w)| = -\infty,$$

whence $|\omega'(r)e^{i\theta}| = 0$ for $r \to 1$. It follows from this that the distance between the points \tilde{w}_r and \tilde{w}_0, corresponding to $e^{i\theta}$ under the mapping $\tilde{w} = \omega(w)$, must be of order $o(1-r)$ for $r \to 1$:

$$|\tilde{w}_r - \tilde{w}_0| \leq \frac{1}{2\pi} \int |\omega'(re^{i\theta})| d\theta = o(1-r)$$

(3)

But Schwartz's lemma implies that, since $|\omega(w)| < 1$ in $|w| < 1$, we have $|\omega(w)| \leq r$ for $|w| \leq r$, and so the distance between \tilde{w}_r and \tilde{w}_0, measured on $|\tilde{w}| = 1$, satisfies the inequality

$$|\tilde{w}_r - \tilde{w}_0| \geq 1 - r.$$

(4)

The contradiction between (4) and (3) proves that the assumption $d\mu_S(\theta) \neq 0$ was false.

Theorem 2 gives a result concerning the possibility of obtaining a region \tilde{G} in the class S, by "internal" deformations of arcs γ_k of the boundary γ of a region $G \not\subset S$, such that the sum of the lengths of the γ_k is smaller than $\gamma_k < \varepsilon$.

THEOREM 2. Let $G \not\subset S$. Then there is a set ε of zero measure on the boundary γ of G such that, if we take any open set $O \supset \varepsilon$ and replace each of the arcs γ_k forming O by a rectifiable arc $\tilde{\gamma}_k \subset G$, with the