THE MODULUS OF CONTINUITY IN L_p

V. I. Ivanov

Introduction. Let $1 \leq p \leq \infty$, L_p be the space of the p-th power-integrable 1-periodic functions $f(x)$ with the norm

$$
\|f\|_p = \left(\int_0^1 |f(x)|^p dx\right)^{1/p} \quad (1 \leq p < \infty),
$$

$L_\infty = C$ be the space of the continuous 1-periodic functions with the norm

$$
\|f\|_C = \sup |f(x)|;
$$

$$
\omega(\delta, f)_p = \sup \{\|f(x + t) - f(x)\|_p : 0 \leq t \leq \delta\}
$$

be the modulus of continuity of $f(x)$ in L_p.

We know that if $\omega(\delta)$ is a modulus of continuity in L_p, then

$$
\omega(\delta) \to 0 \quad (\delta \to 0),
$$

$$
0 \leq \omega(\delta_2) - \omega(\delta_1) \leq \omega(\delta_2 - \delta_1) \leq M \quad (0 < \delta_1 < \delta_2),
$$

Lebesgue [1] has observed that each function $\omega(\delta)$ with the indicated properties is the modulus of continuity of a certain continuous periodic function. Nikol'skii [2] has observed that we can take $\omega(x)$ as such a function. By the same token, we have obtained a description of the set of moduli of continuity in C. Besov and Stechkin [3] have described the set of moduli of continuity in L_2 and have shown that it is a proper subset of the set of moduli of continuity in C. For the spaces L_p, $p \neq 2$, the description of the moduli of continuity has not been obtained. Radoslavov [4] has proved that the moduli of continuity in C are the orders of the moduli of continuity in L_p ($1 \leq p < \infty$). It is interesting to find simple necessary and simple sufficient conditions for moduli of continuity in L_p.

Yudin [5] has proved that

$$
\omega^2 \left(\frac{1}{2}, f\right)_2 \leq 4 \int_0^{1/2} \omega^2(t, f)_c dt
$$
for \(f \equiv L_2 \). Konyagin [6] has shown that for each \(f \equiv L_p \) (\(1 \leq p \leq 2 \)) there exists a \(g \equiv L_2 \) such that

\[
\omega^p(\delta, f)_p = \omega^2(\delta, g)_2.
\]

Therefore, for \(f \equiv L_p \) (\(1 \leq p \leq 2 \))

\[
\omega^p \left(\frac{1}{2} \cdot f \right)_p \leq \frac{1}{4} \int_0^{1/4} \omega^p(t, f)_p \, dt.
\]

Let us observe that (1) can also be obtained from the inequality

\[
\left| f(x) - \frac{1}{p} \int_0^1 f(x) \, dx \right| \leq 2^{-1/p} \left(\frac{1}{p} \int_0^1 |f(x) - f(y)|^p \, dx \, dy \right)^{1/p} \\
(1 \leq p \leq 2, \frac{1}{p} + \frac{1}{p'} = 1).
\]

established by N. I. Chernykh (a communication to the Saratov Winter School on Theory of Functions and Approximation in January 1984) with the help of the numerical inequality

\[
|a - b|^p \geq 2^{p-1} \left(|a|^p + |b|^p - |a - b|^1 \operatorname{sgn} b - |a|^p \operatorname{sgn} a \right) \quad (1 \leq p \leq 2).
\]

The author proves the following theorem.

THEOREM 1. For functions \(f \equiv L_p \) (\(2 < p < \infty \))

\[
\omega^p \left(\frac{1}{2} \cdot f \right)_p \leq \frac{1}{4} \int_0^{1/4} \omega^p(t, f)_p \, dt \quad \left(\frac{1}{p} + \frac{1}{p'} = 1 \right).
\]

Inequalities (1) and (2) give simple necessary conditions for moduli of continuity in \(L_p \). For example, it follows from (1) and (2) that the function \(\omega(\delta) = \delta^2 \) is not a modulus of continuity in \(L_p \) for \(1/p - 1 \leq \alpha < 1 \) \((1 < p \leq 2)\) and \(1 - 1/p - 1 < \alpha \leq 1 \) \((2 < p < \infty)\).

It follows from the results of [3] (see also [7]) that \(\omega(\delta) \) is a modulus of continuity in \(C \) and \(\omega^2(\delta) \) is an upward-convex function, then \(\omega(\delta) \) is a modulus of continuity in \(L_2 \). In particular, this condition is fulfilled for the function \(\omega(\delta) = \delta^2 \) for \(0 < \alpha \leq 1/2 \).

With the help of the function

\[
g(\omega, t) = \begin{cases}
1/4 \cdot \omega'(1/2 - 2t), & 0 \leq t < 1/4, \\
1/4 \cdot \omega'(2t - 1/2), & 1/4 \leq t \leq 1/2,
\end{cases}
\]

we can easily verify that each upward-convex modulus of continuity \(\omega(\delta) \) in \(C \) is a modulus of continuity in \(L \) also.

The character of the inequalities (1) and (2) as sufficient conditions for moduli of continuity in \(L \) and \(L_2 \) enables us to formulate the following problem:

Problem. To show that a modulus of continuity \(\omega(\delta) \) in \(C \) is a modulus of continuity in \(L_p \) if \(\omega^p(\delta) \) is an upward-convex function for \(1 < p < 2 \) and \(\omega^{p'}(\delta) \) is an upward-convex function for \(2 < p < \infty \).

1. **Proof of Theorem 1.** The idea of the proof of inequality (2) goes back to [8]. Let \(L_{pr} \) \((1 \leq p, r \leq \infty)\) be the space of the 1-periodic (with respect to each argument) functions \(g(x, y) \) with the norm

\[
\| g \|_{pr} = \left(\frac{1}{1} \left(\int_0^1 \left(\int_0^1 |g(x, y)|^p \, dx \right)^{r/p} \, dy \right)^{1/r} \right).
\]

Let us consider the operator

\[
T : L_q \rightarrow L_{qp} \quad (p < q).
\]

383