PLUTONIUM RECYCLE IN HEAVY WATER-POWER REACTORS

(P. I. Khristenko)

Original article submitted August 25, 1964, revision submitted April 27, 1965

The performance of a heavy-water reactor using U238 with an equilibrium concentration of U239, Pu240, Pu241 nuclei and small additions of U235 and with natural and depleted uranium make-up is discussed. A portion of the spent fuel discharged from the reactor is cleaned up of fission fragments and recycled to the reactor. Another (smaller) portion is withdrawn from the cycle after plutonium has been extracted and is replaced in the core by natural uranium.

It is good practice to use only a small portion of the available natural uranium in thermal power reactors with no provisions for fuel regeneration in the cycle. If the use of natural uranium in these reactors could be successfully stepped up 5 to 10 times, and the fuel consumed per electric power output reduced in the same portion, there could be an appreciable expansion in the fuel resources available to thermal nuclear power reactors and a consequent increase in nuclear power station ratings.

Approximate estimates indicate that natural and depleted uranium can be used in high-level heavy-water reactors burning U238 with an equilibrium concentration of plutonium and U235 additions, by raising fuel burnup to 30 kg fission fragments or more per ton of natural uranium expended in the fuel cycle. This conclusion applies in part to other types of thermal reactors burning natural and enriched uranium.

The concentrations of plutonium isotopes in the fuel of thermal power reactors using natural or enriched uranium with no fuel recycling are far from equilibrium concentrations, and in this case the amount of electric power generated will be primarily at the expense of the U235 used up.

Consider the operation of a continuously reloaded thermal reactor in steady-state operation at a steady-state equilibrium (or near-equilibrium) concentration of Pu239, Pu240, Pu241 and concentrations of U235 and of fission fragments in the U238 maintained at constant levels. In order to achieve this mode of operation, this part of the fuel has to be discharged from the reactor as soon as the critical concentration of fission fragments is attained in a portion of the fuel, and it must be replaced by fresh fuel. Most of the discharged fuel must be cleaned up to get rid of fission fragments and recycled with the plutonium back to the core, and the remainder withdrawn from the cycle as spent fuel after the plutonium has been extracted (U238 with minimal U235 content), and replaced by natural uranium or by depleted uranium, so calculated as to maintain the specified average design concentration of U235 in the reactor. The plutonium extracted from this second portion of the fuel is either recycled to the reactor or withdrawn from the cycle, depending on whether the reactor is only on power service or whether it is also being used to breed plutonium for fast power reactors. Chemical reprocessing thus reduces in practice to purifying the spent fuel of fission fragments.

It might appear that fuel reprocessing connected with the maintenance of a constant quantity of fission fragments and constant concentration of U235 and plutonium in the U238 necessitates a sizable increase in the capacity of spent fuel reprocessing plants and of fuel element manufacture. But this is not the case, since given the same residence time of uranium in the reactor and the same burnup, the amount of fuel discharged from the reactor and directed to chemical reprocessing will be the same whether the reactor is burning natural uranium or fuel with equilibrium plutonium concentration.

Equilibrium concentrations of Pu239, Pu240, Pu241, Pu242, and U236 in U238 with the U235 concentration maintained constant can be found from equations describing the variation in the number of uranium and plutonium atoms in transient reactor operation [1,2] if we assume the number of U238 and neptunium atoms constant (Q\textsubscript{NP} = const),
ignore the isotope 239U (whose lifetime is very short) and assume $\rho_{AV} = \text{const}$, but \[\frac{d\rho_0}{dz} = 0; \frac{d\rho_1}{dz} = 0; \frac{d\rho_2}{dz} = 0; \frac{d\rho_3}{dz} = 0; \quad (1) \]

where ρ_i are the concentrations of 235U, 241Pu, 241Pu, 239Pu, and 235U. The unit is ρ_0, the concentration of 235U in natural uranium; z_0 is the effective time ($dz = n \nu \sigma_0 dt$) in natural uranium operation, and is related to the time z (referable to 235U operation with equilibrium concentrations of plutonium and constant 235U level) by the formula

\[z = z_0 \frac{\sigma_0'Q_0E_0}{\sigma_0Q_0E_5' + \sigma_0'Q_0E_0 + \sigma_1'Q_1E_1}, \quad (2) \]

where E_i are the energies liberated in the fission of 235U, 239Pu, and 241Pu.

The number of fission neutrons generated per single neutron absorbed in the fuel may be determined by the formula

\[\eta = \frac{\nu_5Q_5 + \nu_9Q_9 + \nu_1Q_1}{c_5 + \sigma_0Q_0 + \sigma_5Q_5 + \sigma_9Q_9 + \sigma_1Q_1 + \sigma_2Q_2 + \sigma_6Q_6}, \quad (3) \]

where ν_i are the numbers of secondary neutrons per neutron absorbed in 235U, 239Pu, 241Pu ($\nu_5 = 2.06; \nu_9 = 2.00; \nu_1 = 2.26$)*.

The diagram shows a plot of $k/\theta = \eta \eta \rho_1 (z) \rho_0 \rho_0$ as a function of ρ_{AV}, the average 235U content in the fuel when a continuously reloaded heavy-water reactor is operating in steady state with an equilibrium concentration of plutonium isotopes and a constant specified average 235U content plus reactor poisons. Plots of the equilibrium concentrations ρ_0, ρ_5, and ρ_1 are similar. The curve of k/θ is defined for $\rho_0 = 1$: in burnup estimates, the resonance absorption in the poisons is taken into account by appropriately increasing the thermal absorption, i.e. by decreasing θ.

The following constants were used in estimates of the ρ_i values: $\sigma_8 = 2.75; c_8 = 0.573; \sigma_9 = 667; \sigma_{1f} = 555; \sigma_9 = 1235; \sigma_{1f} = 846; \sigma_{1f} = 389; \sigma_9 = 730; \sigma_1 = 1100; \sigma_2 = 36; \sigma_6 = 5.5; \sigma_8 = 1480; \sigma_8 = 1.85; \sigma_{1f} = 1.27; \sigma_{1f} = 0.495; \sigma_1 = 2.22; \sigma_2 = 0.045; \sigma_6 = 0.008$.

The following resonance integrals (in barns) were also used: $I_9 = 2600; I_{1f} = 1620; I_5 = 980; I_5 = 556; I_{1f} = 400; I_9 = 400$ ($E_P = 0.22$ eV). The moderating power of heavy water was assigned the value $I_9/I_5 = 5.54$.

The 242Pu and 236U content in the fuel was taken into account partially in the calculations, since the low 235U and 241Pu content in the fuel mean that equilibrium concentrations of 242Pu and 236U can be achieved in no sooner than 40 years of continuous reactor operation (without counting decay time and fuel reprocessing time). 241Am and 242Pu and all their isotopes of higher mass number were left out of account, since it is not clear at present just how 241Am is to be separated from the fuel in reprocessing.

The curves on the diagram were plotted for a gas-cooled heavy-water reactor burning natural uranium in fuel elements 10.5 cm in diameter, with uranium cross section filling factor $\varepsilon = 0.25$, resonance-escape probability $\varphi = 0.9$ in 235U, fast multiplication factor $\mu = 1.027$. These figures are not optimized from the standpoint of reactor operation on the proposed fuel cycle. In this case, it appears feasible to increase fast multiplication by raising the uranium content in the channels and by decreasing the specific power.

Neutron absorption and fission in moderation ($\mu \times \lambda$) are taken into account with the aid of formulas derived in [2]: resonance absorption in 235U is handled by the formula $\varphi_0 = 1/e^{\varphi_0}$, in poisons by using the factor φ_0.

The relative consumption of natural or depleted uranium employed to raise the 235U concentration in the recycled fuel, over a reactor run x, can be found from the condition

*Values of ν_5, ν_9, and ν_1 correspond to neutron temperature 425°K (Byulleten' informats. tsentr po yadernym dannym. No. 1. Moscow, Atom press, 1964, p. 285).