SULLIVAN'S LOCAL EULER CHARACTERISTIC THEOREM

Robert M. Hardt

Using a certain cell decomposition of a closed neighborhood of a point a in a real analytic set A and the orientability modulo 2 of A ([1,3.7] or [5,7.3]), we obtain a short proof, by counting cells, of D. Sullivan's theorem ([9]) that $\chi(A,A \sim \{a\})$ is odd.

1. INTRODUCTION. In [2] D. Burghelea and A. Verona gave a complete proof of this theorem using Alexander-Spanier cohomology, an analogue of Milnor's fibration theorem ([8, §4]), an interesting conic structure lemma for Whitney prestratifications, and Smith theory for the conjugation involution of \mathbb{C}^n. Our proof is based on a cell decomposition (Lemma 3) derived from a local Lojasiewicz stratification of A; the latter is established in [6, §11-15] or [7, §13] using the Weierstrass preparation theorem and classical elimination theory. The help of the referee in condensing the argument on page 5 is gratefully acknowledged.

2. DEFINITIONS. A subset S of a real analytic manifold M is called analytic (respectively, semianalytic) if M admits a covering by open sets U for which there is a real-valued function f (respectively, a finite family \mathcal{F} of real-valued functions) analytic in U so that

$U \cap A$ equals $f^{-1}\{0\}$ (respectively, $U \cap A$ is a union of components of $f^{-1}\{0\} \sim g^{-1}\{0\}$ for some $f,g \in \mathcal{F}$). A locally-finite partition

*Research partially supported by NSF Grant GP29321.
A of a subset \(I \) of \(M \) is called a semianalytic stratification of \(I \) if each \(S \in \mathcal{A} \) is a connected analytic submanifold such that \((I \cap \text{Clos } S) \sim S\) is a union of lower dimensional members of \(\mathcal{A} \).

Let \(H \) be any homology theory which treats the category of pairs of semianalytic sets and continuous maps between such pairs (for example, singular theory or real analytic theory [5]). For \(M \supset A \supset B \) semianalytic, we define

\[
I(A,B) = \sum_{j=1}^{\infty} (-1)^j \text{rank } H_j(A,B)
\]

whenever this sum has only finitely many nonzero terms. Let \(R^0 = \{0\} \), and, for any nonnegative integer \(m \) and \(x \in \mathbb{R}^m \), let \(p_0(x) = 0 \in R^0 \) and \(p_\ell(x) = (x_1, \ldots, x_\ell) \) whenever \(\ell \in \{1, 2, \ldots, m\} \) and \(x = (x_1, \ldots, x_m) \).

3. LEMMA. For any finite family \(\mathcal{A} \) of semianalytic subsets of \(\mathbb{R}^m \) and \(\varepsilon > 0 \), there exist an orthogonal transformation \(g \) of \(\mathbb{R}^m \), positive \(\delta_1, \ldots, \delta_m \) less than \(\varepsilon \), and, for integers \(0 \leq k \leq \ell \leq m \), finite CW decompositions ([3,V,2.1]) \(g_\ell \) of

\[
I_\ell = \mathbb{R}^\ell \cap \{ (x_1, \ldots, x_\ell) : |x_1| \leq \delta_1, \ldots, |x_\ell| \leq \delta_\ell \}
\]

into semianalytic cells such that \(g_\ell = \{ p_\ell(D) : D \in \mathcal{A}_m \} \),

\[
\bigcup g_\ell \cap \{ D : \text{dim } D \leq k \} \text{ is analytic in } I_\ell, \text{ and, for each } S \in \mathcal{A},
\]

\(g(S) \cap \text{Int } I_m \) is a union of cells \(D \) in \(\mathcal{A}_m \) for which \(0 \in \text{Clos } D \) and \(p_{\text{dim } S}|\text{Clos } D \) is a homeomorphism.

Proof: We use induction on \(m \). The case \(m = 0 \) being trivial, we assume \(m \geq 1 \) and abbreviate \(p = p_{m-1} \).