NONLINEAR SCHRODINGER EQUATIONS AND INTERMOLECULAR INTERACTIONS

Péter R. SURJÁN
Institute of Physics, Technical University of Budapest, Quantum Theory Group, Budafoki út 8, H-1521 Budapest, Hungary

Abstract

Nonlinear time-independent Schrödinger equations arise if the model Hamiltonian depends on the wave function. This may occur if certain interactions are accounted for in an averaged manner, for example, if a molecule is embedded into a polarizable medium. Arguments are given in favor of the perturbational solution which facilitate the treatment of nonlinearity effects. Two examples are discussed: the case of a polarizable environment and the effective correction of the basis set superposition error.

1. Introduction

In the theory of the molecular electronic structure, one mostly deals with the nonrelativistic time-independent Schrödinger equation

$$H \Psi = E \Psi,$$

where H is the Born–Oppenheimer electronic Hamiltonian. This equation is linear since H is a linear operator:

$$H(\alpha \Psi + \beta \Phi) = \alpha H \Psi + \beta H \Phi.$$ \hspace{1cm} (2)

There are, however, some applications in which the Hamiltonian is not a linear operator and it does not obey eq. (2). This nonlinearity occurs, for example, if the Hamiltonian H depends on the wave function Ψ:

$$H = H(\Psi)$$ \hspace{1cm} (3)

and the Schrödinger equation reads:

$$H(\Psi) \Psi = E \Psi.$$ \hspace{1cm} (4)

In the general case, this equation cannot be deduced as a stationary solution of the time-dependent Schrödinger equation.
but should be considered only as a model. However, in the cases analyzed in this paper, the Hamiltonian depends on \(\Phi \) through an expectation value:

\[
H(\Phi) = H^0 + \langle \Phi | \hat{A} | \Phi \rangle \hat{B},
\]

where \(\hat{A} \) and \(\hat{B} \) are two operators defined by the model in question. Then, in the stationary case eq. (4) is recovered for \(\Psi \) by the substitution \(\Phi(t) = \Psi e^{i\omega t} \).

Nonlinear Schrödinger equations are dealt with in various fields of physics; we mention the theory of Heisenberg ferromagnets [1–3], soliton dynamics [4–6], or the interactions with the radiation field [7, 8]. In this paper, we shall consider a different problem, in which the nonlinearity of the time-independent Schrödinger equation is a consequence of intermolecular interactions, either because they are accounted for in an averaged manner leading to solvation models [9–12], or because some part of the many-body interaction Hamiltonian is artificially averaged in order to avoid the basis set superposition error (BSSE) [13, 14].

2. General considerations

In many actual models, the nonlinear Hamiltonian can be written in the form:

\[
H = H^0 + V(\Psi),
\]

while the Schrödinger equation for the state \(K \) becomes

\[
(H^0 + V(\Psi_K))\Psi_K = E_K \Psi_K.
\]

Solution of eq. (6), in principle, is possible in several ways:

(i) Iterative solution. The most straightforward idea is to start by solving

\[
H^0 \Psi_K^0 = E_K^0 \Psi_K^0,
\]

then construct an approximate potential \(V(\Psi_K^0) \), solve (6), construct \(V \) by the new solution, and iterate until self-consistency. In addition to possible convergence difficulties, the disadvantages of this technique are that it does not lead to easily interpretable interaction terms, and it should be repeated for each state \(K \) from the very beginning.

(ii) Conventional quantum chemical techniques, e.g. configuration interaction (CI), are not trivial to implement because the Hamiltonian depends on the state \(K \).