MULTIPLICITY OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT IN SOME CONTRACTIBLE DOMAINS.

Donato Passaseo

In this paper we prove that, for every positive integer \(k \), there exists a contractible bounded domain \(\Omega \) in \(\mathbb{R}^N \) with \(N \geq 3 \), where the problem (*) (see Introduction) has at least \(k \) solutions.

Introduction

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \) with \(N \geq 3 \). In recent years there has been much interest in nonlinear elliptic equations of the form

\[
\begin{align*}
\Delta u + u^{2^* - 1} &= 0 \quad \text{in} \quad \Omega \\
\quad u > 0 \quad &\text{in} \quad \Omega \\
\quad u &= 0 \quad \text{on} \quad \partial \Omega,
\end{align*}
\]

where \(2^* = \frac{2N}{N-2} \) is the critical exponent for the Sobolev imbedding \(H_0^{1,2}(\Omega) \subseteq L^p(\Omega) \).
The problem (\(\ast \)) is a simplified model of some variational problems in physics and geometry, whose common feature is a lack of compactness (see for example the Yamabe’s problem in [1], [25]).

Indeed, the solutions of (\(\ast \)) correspond to the critical points \(u \) of the functional

\[
\int_{\Omega} \left(\frac{1}{2} |Du|^2 - \frac{1}{2^*} \int_{\Omega} |u|^{2^*} \right) dx, \quad \text{with } u > 0;
\]

but this functional does not satisfy the classical Palais-Smale’s condition, since the imbedding \(H^{1,2}_0(\Omega) \subset L^{2^*}(\Omega) \) is not compact; therefore it is not possible to use the standard variational methods to find critical points.

A first contribution to problem (\(\ast \)) is the following negative result due to Pohozaev.

Theorem (Pohozaev [21]). If the bounded domain \(\Omega \) is star-shaped, then (\(\ast \)) has no solution.

Nevertheless, more recently Brezis and Nirenberg have pointed out that lower-order perturbations of the nonlinear term in (\(\ast \)) can reverse this situation, and the perturbed problem can have solution, as follows also from general bifurcation theory (see [22], [19]).

Among the other results, Brezis and Nirenberg obtain in [6] the following theorem.

Theorem (Brezis-Nirenberg [6]). Let \(\Omega \subset \mathbb{R}^N \) with \(N \geq 3 \) and \(\lambda_1 \) denote the first eigenvalue of \(-\Delta\) in \(H^{1,2}_0(\Omega) \). There exists \(\lambda^* \) in \([0, \lambda_1]\), such that, if \(\lambda \in]\lambda^*, \lambda_1[\), then problem