A Pullback Theorem for Locally-Equiconnected Spaces

Philip R. Heath

ABSTRACT

In this note we prove a pullback Theorem for Locally Equiconnected spaces, that is dual to the well known adjunction Theorem of Dyer and Eilenberg [DE].

1. Statement of Results

Consider the following pullback in the category Top of Topological spaces.

\[
\begin{array}{ccc}
X \times E & \xrightarrow{f} & E \\
\downarrow{\bar{f}} & & \downarrow{p} \\
X & \xrightarrow{f} & B
\end{array}
\]

Thus \(X \times E\) is the subspace of \(X \times E\) consisting of pairs \((x,e)\) with \(f(x) = p(e)\). A space \(X\) is \textit{Locally Equiconnected} (LEC) if the inclusion of the diagonal \(\Delta X\) in \(X \times X\) is a cofibration. For Metric spaces this condition is easily seen to be equivalent to the classical definition, requiring that the diagonal be a strong neighbourhood deformation retract of \(X \times X\) (see [HN] for other conditions for this equivalence). The main result of this paper is the following:

\textbf{Theorem.} If \(p:E \to B\) is a fibration and \(E, B, \) and \(X\) are LEC then so also is \(X \times E\).

The theorem allows one to construct a Postnikov Tower that is LEC at each stage by using LEC spaces at each inductive step. This idea is dual to the result that CW complexes are LEC (see [L]). Our Theorem, though not the proof, is a kind of dual of the well known adjunction Theorem for locally
equiconnected spaces (see [DE] or [L]). Among other applications we have:

Corollary A The category of LEC spaces is under the formation of mapping tracks.

The next Corollary is stated but not proved in [H], it was announced to appear in the sequel to [HN], which unlikely to be completed.

Corollary B If \(p : E \to B \) is a fibration in which \(E \) and \(B \) are LEC then for any path \(\sigma : e \to e' \) in \(E \), there is a lifting function \(\lambda \) for \(p \) with the property that \(\lambda(\sigma, e) = \sigma \); Furthermore if \(p(\sigma) \) is not a constant path, then there is a regular lifting function with the same property as above.

If \(p : E \to B \) above has path connected fibres, then Corollary B allows one to choose translation functions between fibres that are base point preserving (see [H] p 282).

I would like to express my appreciation to the referee whose comments allowed for a shorter neater proof of the main result. The main question this work answers arose during joint work with G. Norton.

2. Proofs

The letter \(I \) will denote the closed unit interval \([0,1]\). We recall some definitions (see [tDKP]): Let \(A \subset X \) be a closed subspace of \(X \), a halo of \(A \) in \(X \), (called an N-halo in [HN]) is a map \(\psi : X \to I \) such that \(\psi^{-1}(0) = A \), \(A \) is said to be a strong halo deformation retract of \(X \) if there is a halo of \(A \) in \(X \) such that the subset \(V = \psi^{-1}([0,1]) \) is deformable to \(A \) in \(X \) rel. \(A \), that is there is a retraction \(r : V \to A \) and a homotopy \(H : V \times I \to X \) with \(H(x,0) = v \), \(H(x,1) = r(x) \), and \(H(a,t) = a \) for all \(x \in V \), \(t \in I \). The inclusion of a closed subspace \(A \) into a space \(X \) is a cofibration if \(A \) is a strong halo deformation retract of \(X \). Note that for us, all cofibrations are closed.

We name two results of Strøm that we will need: (i) The pullback rule [S2]. If \(p : E \to B \) is a fibration and \(A \to B \) is a cofibration, then the inclusion \(p^{-1}(A) \) into \(E \) is a cofibration. (ii) The power rule, [S3] If \(A \to X \) is a cofibration and \(C \) is compact, then the inclusion \(A^C \to X^C \) is also a cofibration, where \(X^Z \) denotes the space of continuous maps from \(Z \) to \(X \) with the compact open topology.