Synthesis and Copolymerization Reaction of a Triosmium Alkylidyne Carbonyl Cluster

\[\text{[Os}_3(\mu-\text{H})_2(\text{CO})_9(\mu_3-\text{CNC}_5\text{H}_4-\text{CH}=\text{CH}_2)] \]

Wing-Tak Wong, 1, 2, 4 Wai-Yeung Wong, 1 and Chiu-Wing Yip 3

Received December 20, 1994

A neutral triosmium alkylidyne carbonyl cluster containing the 4-vinylpyridine (4vpy) moiety \([\text{Os}_3(\mu-\text{H})_2(\text{CO})_9(\mu_3-\text{CNC}_5\text{H}_4-\text{CH}=\text{CH}_2)] \) (1) has been prepared as red crystalline solids in good yield. Monomer (1) was copolymerized with styrene in the presence of \(\alpha,\alpha'-\text{azobis(isobutyronitrile)} \) (AIBN) in chloroform at 60°C and a polymer-immobilized alkylidyne cluster of osmium was obtained. To compare the spectroscopic properties with the copolymers, a structurally similar repeating unit of the copolymers, \([\text{Os}_3(\mu-\text{H})_2(\text{CO})_9(\mu_3-\text{CNC}_5\text{H}_4-\text{CH}_2\text{CH}_3)] \) (2), has also been synthesized and characterized.

KEY WORDS: Triosmium alkylidyne carbonyl clusters; polyvinylpyridine; MLCT transition.

INTRODUCTION

In recent years, there has been growing interest in the synthesis of polymer-immobilized clusters of the noble metals (PCNM) due to their potential applications in the production of different polymeric materials with unusual properties [1]. The wide and selective applications of PCNM as catalysts in organic syntheses have also attracted much attention [2–6]. Approaches based on the (co)polymerization of cluster-containing monomers have not been studied extensively [7]. In view of this, we have prepared a series

1 Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
2 Centre for Materials Science, The University of Hong Kong, Pokfulam, Road, Hong Kong.
3 Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong.
4 To whom all correspondence should be addressed.

\[1040-7278/95/0600-0311+$07.50/0 \odot 1995\text{ Plenum Publishing Corporation} \]
of soluble PCNM with complete spectroscopic characterization and molecular weight determination.

In this work, cluster (1) was first prepared as a new vinyl type monomer of Os₃-derivative and its copolymerization reaction with styrene was studied.

EXPERIMENTAL

All reactions unless otherwise stated were carried out under an atmosphere of dry dinitrogen using standard Schlenk and vacuum line techniques. Dichloromethane was dried over CaH₂ and n-hexane was distilled from sodium benzophenone ketyl. The compound [Os₃(μ-H)₃(CO)₉(μ₃-CCI)] was prepared as described previously [8]. AIBN was recrystallized from methanol. Styrene and 4-vinylpyridine were freshly distilled under vacuum immediately before use. All other reagents were used as received. Infrared spectra were recorded on a BIO-RAD FTS-7 IR spectrometer using 0.5 mm solution cells. The ¹H NMR spectra were recorded on a JEOL GSX270FT-NMR spectrometer using deuteriated solvents as lock and reference [SiMe₄ (δ = 0)]. Mass spectra were recorded on a Finnigan MAT 95 instrument with fast atom bombardment technique. Electronic absorption spectra were obtained in a microprocessor-controlled Perkin Elmer UV/VIS spectrophotometer Lambda 3B, thermostatted by a Lauda circulating bath. Routine separation of products were performed in the air by thin-layer chromatography with plates coated with Merck Kieselgel 60 GF₂₅₄.

Synthesis of Monomer (1)

[Os₃(μ-H)₃(CO)₉(μ₃-CCI)] (87.3 mg, 0.1 mmole) was dissolved in CH₂Cl₂ (7 ml). An excess of 4-vinylpyridine (0.11 ml, 1.0 mmole) was added and DBU (15.2 mg, 0.1 mmole) was added dropwise while the reaction mixture was stirred at 0°C. Immediate color change from pale yellow to deep red was observed. After stirring for 30 minutes, the solution was concentrated to 3 ml under vacuo. Purification was accomplished by column chromatography, eluting with n-hexane: CH₂Cl₂ (60:40 v/v). Complex (1) was isolated and obtained as red crystalline solids in 69% yield (65 mg) after recrystallization from a n-hexane/CH₂Cl₂ solution.

IR (CHCl₃) vₓ/cm⁻¹: 2089 m, 2055 vs, 2024 vs, 1984 s, 1949 m, 1934 m. ¹H NMR (CD₂Cl₂): δ 9.52 (d, 2.6-pyH, J = 7.0 Hz), δ 7.41 (d, 3.5-pyH, J = 7.0 Hz), δ 6.75 (dd, CH = CH₂, J = 17.6 Hz, 10.7 Hz), δ 6.33 (d, CH = CH₂, J = 17.6 Hz), δ 5.97 (d, CH = CH₂, J = 10.7 Hz), δ -18.96