A CLASS OF PERIODIC JACOBI-PERRON ALGORITHMS IN
PURE ALGEBRAIC NUMBER FIELDS OF DEGREE \(n \geq 3 \)

Claude Levesque

The author obtains the periodicity of the Jacobi-Perron algorithm of \((0, \ldots, 0, n-1) \) where \(0^n = (D^n - d) / V^n \), with \(D, d, V \in \mathbb{N}^* = \{1, 2, \ldots\} \), \(d \mid D \), \(D \) and \(d \) congruent to \(+1(\mod V^{n-1})\) and \(D \equiv (n-1)d(V+1)/2 + 1 \). The case \(V = 1 \) has been studied by L. Bernstein and the proof for arbitrary \(V \) follows exactly the same pattern. Secondary results are then obtained from the main theorem.

0. INTRODUCTION

The Jacobi-Perron Algorithm (JPA) is one of the generalizations of the ordinary continued fraction algorithm to higher dimensions [1], and its definition is recalled at the end of this introduction.

Consider pure algebraic number fields of the form \(K = \mathbb{Q}(\omega) \) where

\[
\omega^n = M = D^n + d > 2 \quad (n \geq 3),
\]

with \(D, d \in \mathbb{N}^* = \{1, 2, \ldots\} \), and

\[
d \mid pD \quad \text{for} \quad n = p^n \quad (p \text{ prime}) \quad \text{or} \quad d \mid D \quad \text{for} \quad \text{other} \quad n.
\]

When an \(n \)th-power \(V^n \) divides \(M \), let

\[
0^n = m = M / V^n = \omega^n / V^n.
\]

L. Bernstein [1] showed that the JPA of a \((0) = (\omega, \ldots, \omega^{n-1})\) is periodic when

\[
M = D^n + d, \quad \text{with} \quad D \geq (n-2)d,
\]

\[
M = D^n - d, \quad \text{with} \quad D \geq 2(n-1)d.
\]

Using his methods and ideas described in [2], we obtain
the main result of this paper, viz. the periodicity of the JPA of $a^{(0)} = (\theta, \ldots, \theta_{n-1})$ when

$$M = D^n - d, \quad \theta^n = M/V^n,$$
with $D > (n-1)d(V+1)/2+1$, $D, d \equiv 1 \pmod{V^{n-1}}$ and $\theta \in \mathbb{N}^*.$

When $V = 1$ in (0.6), note the new bound for D.

Let $t, V \in \mathbb{N}^*$. L. Bernstein [5] obtained the periodicity of the JPA of $a^{(0)} = (\theta, \theta^2)$ when

$$M = (tV^3+1)^3 - 1, \quad \theta^3 = M/V^3 = t^3V^6 + 3t^2V^3 + 3t,$$
after having previously considered in [4] the case $t = V^3 + 2$ in (0.7). It is worth noting that if $D = tV^n+1$ and $d = 1$ in (0.6), we generalize L. Bernstein's case (0.7) to arbitrary dimension. Moreover when $V = nV_0$, $D = n^n - tV^n + 1$ and $d = 1$ in (0.6), we generalize the case $\theta^3 = ((9tV^3+1)^3 - 1)/27V^3 = 27t^3V^6 + 9t^2V^3 + tV_0$ previously studied in [6].

Let $a^{(0)} = (a_1^{(0)}, a_2^{(0)}, \ldots, a_{n-1}^{(0)})$ be a vector of the real Euclidean vector space \mathbb{R}^{n-1}, $n \geq 2$. A sequence $<a(v)>$ of vectors of \mathbb{R}^{n-1} is called the JPA of $a^{(0)}$ if for all $v \in \mathbb{N}$,

$$a(v+1) = \left(\frac{a_2^{(v)} - b_2^{(v)}}{a_1^{(v)} - b_1^{(v)}}, \ldots, \frac{a_{n-1}^{(v)} - b_{n-1}^{(v)}}{a_1^{(v)} - b_1^{(v)}}, \frac{1}{a_1^{(v)} - b_1^{(v)}}\right).$$

$$a_1^{(v)} = b_1^{(v)}, \quad b_1^{(v)} = \left[\frac{a_1^{(v)}}{a_1^{(v)} - b_1^{(v)}}\right] \quad (i = 1, \ldots, n-1),$$

where $[\cdot]$ is the greatest integer function.

The JPA of $a^{(0)}$ is called periodic, if there exist two integers ℓ, m with $\ell \geq 0$, $m \geq 1$ such that

$$a^{(v+m)} = a^{(v)} \quad (v = \ell, \ell+1, \ldots).$$

The sequences

$$a^{(0)}, a^{(1)}, \ldots, a^{(\ell-1)}$$
and

$$a^{(\ell)}, a^{(\ell+1)}, \ldots, a^{(\ell+m-1)}$$
are called respectively the preperiod and the period of the periodic JPA, and ℓ and m are their respective lengths. When ℓ and m are minimal, the preperiod and the period are said to be primitive. If $\ell = 0$, the JPA of $a^{(0)}$ is said to be purely periodic.

Let $\mathbb{N}_n = \mathbb{N}(a_1^{(0)}, \ldots, a_{n-1}^{(0)})$. If the JPA of $a^{(0)}$ becomes