THE GENERAL STONE-WEIERSTRASS PROBLEM
AND EXTREMAL COMPLETELY POSITIVE MAPS

John W. Bunce

Let A be a C*-algebra with identity e and let B be a C*-subalgebra of A that contains e. We show that if B separates the pure states of A, then, for each n, B also separates the set $ECP(A, C^n; I)$ of extremal completely positive unital maps of A into C^n, thus giving another equivalent condition for the general Stone-Weierstrass conjecture for C*-algebras.

Let B be a C*-subalgebra of a C*-algebra A and assume that B contains the identity e of A. The general Stone-Weierstrass conjecture is that $B = A$ if B separates the pure states of A. For summaries of the partial progress on this problem, see [1] or [4]. Since then, building on results from [2], Longo and Popa have proved, independently, in [7] and [8] that $B = A$ if A is separable and B separates the factor states of A.

In a recent paper [6], I. Fujimoto and S. Takahasi proved that several conditions are equivalent to B separating the pure states of A. One such condition is that B separate the set of nonzero pure completely positive maps from A into $L(H)$ for H a Hilbert space. In this note we consider the condition that B separate the set of extremal completely positive unital maps of A into $L(H)$ and show that if H is finite-dimensional this condition is equivalent to B separating the pure states of A. On the other hand, if B separates the extremal completely positive unital maps of A into $L(H)$ for every Hilbert space H, it follows
Bunce

that B = A. We also examine the two conjectures embedded in Conjecture 3 of [6] and show that one of them is equivalent to the general Stone-Weierstrass conjecture, and the other is false.

We use the concepts and notation of Arveson [3, Chapter 1]. For A a C*-algebra with identity, a completely positive linear map of A into L(H), the C*-algebra of bounded linear operators on H, has the form

\[\phi(x) = V^{*} \pi(x)V \]

where \(\pi \) is a *-representation of A on some Hilbert space \(H_{\pi} \) and V is a bounded operator from H to \(H_{\pi} \). If \([\pi(A)VH]_{\pi}\), the closed linear span of \(\pi(A)VH \), equals \(H_{\pi} \), then \(V^{*} \pi(x)V \) is the unique (up to a unitary intertwining operator) such decomposition of \(\phi \) and is called the Stinespring decomposition of \(\phi \). Let \(\text{CP}(A,H) \) denote the set of completely positive linear maps of A into L(H). Let \(\text{CP}(A,H;I) \) denote the set of \(\phi \in \text{CP}(A,H) \) for which \(\phi(I) = I \), the identity of L(H). By [3, Theorem 1.4.6] \(\phi = V^{*} \pi V \) is an extreme point of the (compact) convex set \(\text{CP}(A,H;I) \) if and only if the map

\[X \mapsto VV^{*}X|_{V(H)} \]

from \(\pi(A)' \) to L(V(H)) is one-to-one. A completely positive linear map \(\phi = V^{*} \pi V \) is called pure if \(\pi \) is irreducible and V \(\neq 0 \). Let \(\text{ECP}(A,H;I) \) denote the set of extreme points of \(\text{CP}(A,H;I) \). We say that a C*-subalgebra B of A separates \(\text{ECP}(A,H;I) \) if \(\phi = \theta \) whenever \(\phi \) and \(\theta \) are in \(\text{ECP}(A,H;I) \) and \(\theta|_{B} = \phi|_{B} \).

Theorem 1. If A is a C*-algebra with identity e and B is a C*-subalgebra of A which contains e and separates the pure states of A, then B separates \(\text{ECP}(A,\mathbb{C}^{P};I) \) for every natural number n.