ON THE STRUCTURE OF COMMUTATIVE AFFINE GROUP SCHEMES OVER A NON-PERFECT FIELD

Mitsuhiro Takeuchi

Let k be a non-perfect field of characteristic $p > 0$ with a p-basis β and k_s the algebraic separable closure of k. Starting from the ring of Schoeller D^β [3] and the topological Galois group Π of k_s over k, we construct a new ring ϕ such that the category of commutative affine k-group schemes is anti-equivalent to the category of effaceable left ϕ-modules. (The effaceability is defined in the text).

Table of Contents

Introduction 1
1. Review of the theory of Schoeller with corrections and supplements 4
2. The structure theorem of Acm_k 16
3. The bimodule Σ 28
References 36

Introduction

Let k be a non-perfect field of characteristic $p > 0$ with a p-basis β. Let k_s be the algebraic separable closure of k and Π the topological Galois group of k_s over k. A left Π-module is continuous if the stabilizer of its each element is an open subgroup of Π. Then the category of commutative affine multiplicative k-group schemes is anti-equivalent to the category of continuous left Π-modules [1,IV,§1,3.6]. On the other hand C. Schoeller [3] describes a ring D^β and a family of left
ideals of \(D^\infty \{L_\alpha \} \), calls a left \(D^\infty \)-module effaceable if the annihilator of its each element contains some of \(L_\alpha \) and proves that \(\text{Acu}_k \), the category of commutative affine unipotent \(k \)-group schemes is anti-equivalent to the category of effaceable left \(D^\infty \)-modules. We recall the definition of the ring \(D^\infty \) and the family \(\{L_\alpha \} \) in \$1, correcting some errors of the original description (mainly in case \(\text{card}(\mathcal{B}) \) is infinite).

Let \(\text{Acu}_k \) denote the category of commutative affine \(k \)-group schemes. The purpose of this paper is to construct a ring \(\phi \) and a family of its left ideals \(\{L_\beta \} \) in such a way that the category \(\text{Acu}_k \) is anti-equivalent to the category of left effaceable \(\phi \)-modules, where we call a left \(\phi \)-module effaceable if the annihilator of its each element contains some of the left ideals \(L_\beta \). The ring \(\phi \) which we describe in this paper has the following form: We determine a \(D^\infty \)-\(\mathbb{H} \)-bimodule \(\mathcal{E} \) and a family of its sub-bimodules \(\{E_\gamma \} \) in some canonical way. The quotient bimodules \(\mathcal{E}/E_\gamma \) are finitely generated effaceable left \(D^\infty \)-modules and right continuous \(\mathbb{H} \)-modules. Let \(\phi = \begin{bmatrix} D^\infty & \mathcal{E} \\ 0 & \mathbb{Z}[\mathbb{H}] \end{bmatrix} \) be

the set of \(2 \times 2 \) matrices \(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \) with \(a \in D^\infty, b \in \mathcal{E} \) and \(c \in \mathbb{Z}[\mathbb{H}] \) (= the group ring of \(\mathbb{H} \)). The usual matrix multiplication rule makes \(\phi \) a ring. (Notice that \(D^\infty \mathcal{E} + \mathcal{E} \mathbb{H} \subseteq \mathcal{E} \). The families \(\{L_\alpha \} \) and \(\{E_\gamma \} \) and the topology of \(\mathbb{H} \) determine a family of left ideals of \(\phi \) \(\{L_\beta \} \) in some canonical way. The ring \(\phi \) and the family \(\{L_\beta \} \) satisfy the condition we mentioned above. The main theorem on the structure of \(\text{Acu}_k \) is proved in \$2. A more close observation of the bimodule \(\mathcal{E} \) is made in \$3.

Our notation is essentially the same as [1] and [3]. If \(\mathcal{C} \) is a category, \(a \in \mathcal{C} \) means that \(a \) is an object of \(\mathcal{C} \). If \(a, b \in \mathcal{C}, \mathcal{C}(a,b) \) denotes the class of morphisms from \(a \) to \(b \). \(\mathcal{M} \) and \(\mathcal{E} \) denote the categories of models and sets respectively. A model means a small commutative ring. If \(K \in \mathcal{M}, \mathcal{M}_K \) denotes the category of \(K \)-models (i.e., small commutative \(K \)-algebras) and \(\mathcal{M}_K \mathcal{E} \) the category