COHEN-MACAULAY PROPERTIES OF THE KOSZUL HOMOLOGY

Herbert Sanders

The Koszul homology $H.(y,N)$ which is constructed with respect to a sequence y and a maximal Cohen-Macaulay (CM) module N over a local CM ring A admitting a canonical module ω_A, will be compared with the Koszul homology $H.(y,\text{Hom}_A(N,\omega_A))$.

If $R := A/I$ with $I = (y)$ is a CM ring, then the canonical module ω_R of R exists and we will mainly show the existence of a natural isomorphism $H.(y,\text{Hom}_A(N,\omega_A)) \simeq \text{Hom}_R(H.(y,N),\omega_R)$, if $H.(y,N)$ is a maximal CM module over R. This generalizes a result of Herzog in [2].

Using this isomorphism we are able to compute the graded canonical module of the graded ring $\text{gr}_I(A)$ in a certain case.

In the last part of this paper we define a polynomial $U^N(y,x)$ associated with the Koszul homology $H.(y,N)$ similar to Huneke in [7]. Huneke proved that $H^j(y,N)$ is CM, if $j < \text{mindeg} \ U^N(y,x)$. We will proceed to show that $H^j(y,N)$ is CM, if $j > \text{deg} \ U^N(y,x)$.

INTRODUCTION

Throughout this paper we will be dealing with commutative rings with identity, which are noetherian.

Let A be such a ring. Then we only consider finitely generated modules over A.

If in addition A is local with maximal ideal m and residue class field k and if M and N are two modules over A, we

1 The material presented in this paper constitutes part of the author's thesis submitted to Universität Essen.
define \(\text{grade}^N_M := \inf \{ i | \text{Ext}_A^i(M, N) \neq 0 \} \). Notice that \(\text{grade}^N_M \) is the maximal length of an \(N \)-regular sequence in \(\text{Ann} M \).

For an ideal \(I \) in \(A \) it is convenient to put \(\text{grade}^A_I R \), where \(R = A/I \).

Further if \(A \) is a Cohen-Macaulay (CM) ring admitting a canonical module \(\omega_A \), we define the dual module of \(N \) over \(A \) as \(\text{Ext}_A^{d-e}(N, \omega_A) \) where \(e := \dim N \) and \(d = \dim A \) and denote it by \(\omega_A(N) \).

If \(N \) is CM of dimension \(e \), then \(\omega_A(N) \) is also CM of dimension \(e \) and \(\omega_A(\omega_A(N)) = N \). In particular \(\omega_A(\omega_A) = A \).

For more details see [3].

We now make some assumptions which are valid for this paper.

Let \((A, m, k)\) be a \(d \)-dimensional local CM ring admitting a canonical module \(\omega_A \). Further let \(I \) be an ideal in \(A \) with \(\text{grade} I = g \) which is generated by the sequence \(y = y_1, \ldots, y_n \). Put \(R = A/I \).

We think of the Koszul complex \(K_\bullet(y, A) \) as follows. \(K_1(y, A) \) is a free \(A \)-module of rank \(n \) with basis \(e_1, \ldots, e_n \). For each \(p = 0, \ldots, n \) let \(K_p(\cdot, A) := \Lambda^p K_1(y, A) \). We define the boundary map \(\partial : K_p(y, A) \rightarrow K_{p-1}(y, A) \) by its action on the basis vectors:

\[
\partial(e_{i_1} \wedge \ldots \wedge e_{i_p}) = \sum_{j=1}^{p} (-1)^{j-1} y_{i_j} e_{i_1} \wedge \ldots \wedge \hat{e}_{i_j} \wedge \ldots \wedge e_{i_p}
\]

(here \(\wedge \) means omitting that element). Thus \(K_\bullet(y, A) \) is a (homological) complex of \(A \)-modules. If \(N \) is any \(A \)-module we set \(K_\bullet(y, N) := K_\bullet(y, A) \otimes_A N \). Its cycles, respectively its homology, we will denote by \(Z_\bullet(y, N) \), respectively by \(H_\bullet(y, N) \).