SCOTT BROWN'S TECHNIQUES FOR PERTURBATIONS OF DECOMPOSABLE OPERATORS

H. Mohebi and M. Radjabalipour

Using Scott Brown's techniques, J. Eschmeier and B. Prunaru showed that if \(T \) is the restriction of a decomposable (or \(S \)-decomposable) operator \(B \) to an invariant subspace such that \(\sigma(T) \) is dominating in \(C \setminus S \) for some closed set \(S \), then \(T \) has an invariant subspace. In the present paper we prove various invariant subspace theorems by weakening the decomposability condition on \(B \) and strengthening the thickness condition on \(\sigma(T) \).

0. INTRODUCTION. Let \(B \) be a bounded linear operator on a Banach space \(Z \) and let \(G \) be a nonempty open subset of \(C \). We say \(B \) is decomposable in \(G \) if for every open subset \(H \) of \(G \) there exists an invariant subspace \(M \) of \(B \) such that

\[
\sigma(B|_M) \subset \overline{H} \quad \text{and} \quad \sigma(B/M) \subset C \setminus H.
\]

(Here \(B/M \) denotes the operator induced by \(B \) on \(Z/M \).) The class of such operators was initially studied by C. Foias and later generalized and investigated by others. (See [2, 3, 7, 9, 10, 11, 12, 17, 20] and the references cited there.) It is shown in [9] that if \(B \) is decomposable in \(G \), if \(T \) is the restriction of \(B \) to an invariant subspace \(X \), and if \(\sigma(T) \) is dominating in \(G \), then \(T \) has a (nontrivial) invariant subspace. (A set \(K \) is dominating in a nonempty open set \(G \) if \(\sup\{|f(z)| : z \in G\} = \sup\{|f(z)| : z \in K \cap G\} \) for all \(f \in H^\infty(G) \).) This result of [9] is an extension of the works initiated by S. Brown and generalized by others. (See [2, 5, 6, 9] and the references cited there.) In the present paper, we study the invariant subspaces of the restrictions \(T \) of operators \(B \) satisfying (*) for a smaller family of open sets \(H \subset G \). However, in some cases we assume \(\sigma(T) \cap G \) is thicker. In fact, we will prove three main invariant subspace theorems whose hypotheses are of the following types. The first type is an extension of, and mainly inspired by, the techniques of [9]. The hypothesis consists of the following conditions (1)-(3).

(1) The operators \(T \in B(X) \) and \(B \in B(Z) \) satisfy \(qT = Bq \) for some injective \(q \in B(X, Z) \)

\(^1\) The research is supported by a grant from the Institute for Studies in Theoretical Physics and Mathematics (IRAN).
with a closed range qX.

(2) There exist sequences $\{G(n)\}$ of open sets and $\{M(n)\}$ of invariant subspaces of B such that $G(n) \subset G(n+1)$, $G = \bigcup_n G(n)$, $\sigma(B|M(n)) \subset C\setminus G(n)$ and $\sigma(B|M(n)) \subset G(n)$, $n = 1, 2, \ldots$.

(3) The spaces X and Z are reflexive and $\sigma(T) \setminus \sigma_p(B)$ is dominating in G.

Condition (1) implies that T is similar to the restriction of B to its invariant subspace qX. Condition (2) is much weaker than the decomposability condition on B. In (3), $\sigma_p(B)$ denotes the point spectrum of B. Condition (3), in particular, implies that $\sigma(T)$ is dominating in G.

The second type is inspired by [9;13] and assumes (1) and the following conditions (2') and (3').

(2') There exist sequences $\{\Delta(n)\}$ of open sets and $\{M_1(n)\}$ and $\{M_2(n)\}$ of invariant subspaces of B such that $\Delta(n) \subset \Delta(n+1)$, $G = \bigcup_n \Delta(n)$, $\sigma(B|M_1(n)) \subset \Delta(n)$, $\sigma(B|M_2(n)) \subset C \setminus \Delta(n+1)$, $M_1(n) + M_2(n)$ is closed, and $\sigma(B/[M_1(n) + M_2(n)]) \subset \Delta(n+1) \setminus \Delta(n)$, $n = 1, 2, \ldots$.

(3') For each n there exists $n' > n$ such that no component of $G \setminus \sigma(T)$ intersects the boundaries of $\Delta(n)$ and $\Delta(n')$ simultaneously.

Again here condition (2') is weaker than the decomposability condition on B. Condition (3'), in particular, implies that $\sigma(T)$ is dominating in G.

In the third type we are inspired by [2;6] and assume T and B satisfy condition (1) and the following conditions (2'') and (3'').

(2'') Condition (2') is satisfied and

$$\sup\{||y||/||x+y|| : y \in M_1(n), x \in M_2(n); n = 1, 2, \ldots\} = d < \infty$$

(3'') $\sigma(T)$ is dominating in $G = \bigcup_n \Delta_n$.

Condition (2'') is weaker than the unconditional decomposability of B assumed in [2]. (See also [18] for similar conditions.)

Although the main results of [2,6] (and others) can be obtained as special cases of [9], the three extensions of the present paper are basically different and are not special cases of each other. To