A NOTE ON C_p ESTIMATES FOR CERTAIN KERNELS

Dan Timotin

For a certain class of operators defined by integral kernels, a necessary and sufficient condition is given for the belonging to the Schatten-von Neumann ideals C_p. The operators considered generalize the classical Hankel operators; the results thus extend Peller's characterization of the Hankel operators in a class C_p.

In [10] Peller obtained a precise criterion for the Hankel operators H_ϕ to belong to a given Schatten-von Neumann class namely, $H_\phi \in C_p$ (1 $\leq p < \infty$) if and only if the antianalytic part of ϕ is in a certain Besov space on the unit circle (Recall that $H_\phi : H^2 + L^2 \otimes H^2$ is given by the formula $H_\phi f = (I - P_+)\phi f$, where P_+ is the Riesz projection from L^2 onto H^2). Peller extended subsequently his result to other operator ideals ([11]; see also [12], [14]).

On the other hand, since the commutator (in $L^2(\mathbb{T})$) of the multiplication operator M_ϕ with the Riesz projection has the matrix representation

$$
\begin{bmatrix}
0 & H_\phi \\
H_\phi & 0
\end{bmatrix}
$$

Rochberg [13] has suggested, as higher dimensional generalizations of Peller's result, the estimation of commutators of multiplication operators with singular integral operators of Calderón-Zygmund type. In this case the frame of \mathbb{R}^d seems more natural. Results for such commutators and, more recently, for iterated commutators have been obtained by Janson and Wolff [7] Janson and Peetre [5]. For a comprehensive survey of Hankel operators, Peller's results and subsequent generalizations, see [9].

The present note considers a further generalization, suggested by the Fourier transform of the previous case. We obtain results for integral operators defined by a kernel of type:

$$A(x,y)\hat{\phi}(x-y)$$

where the main condition imposed on A is its invariance under the action of a fixed discrete multiplicative subgroup G of \mathbb{R}^*_+.

(2) \[A(gx, gy) = A(x, y), \quad x, y \in \mathbb{R}^d, \quad g \in G. \]

It seems improbable to obtain a necessary and sufficient characterization, in terms of both \(A \) and \(\phi \), of operators with kernel (1) belonging to a Schatten-von Neumann class. Our results are of the following type (see theorems 1 and 2): under certain conditions preimposed on \(A \), the operator defined by the kernel (1) is in \(C_p \) if and only if \(\phi \in \mathcal{H}^{d/p} \) (for the definition of the homogeneous Besov spaces used here, see [8]). This goal is actually achieved only for \(1 \leq p \leq 2 \). For \(2 < p < \infty \), we obtain only the necessity; however, the proof is more general and simpler than that in [7] or [10]. Note that in [5], about which we recently learned, kernels of type (1), but satisfying the stronger symmetry condition

\[A(\lambda x, \mu y) = \lambda \mu A(x, y), \quad x, y \in \mathbb{R}^d, \quad \lambda, \mu > 0 \]

are mentioned as a possible further generalization of iterated commutators. Also, the use of interpolation in theorem 1 below is similar to that in [5].

The author thanks Dan Voiculescu for several helpful suggestions and many useful discussions.

The author is also grateful to V.V. Peller, S. Janson and J. Peetre for kindly communicating their recent preprints and results.

The present paper has been circulated as INCREST preprint no. 47 (July 1984).

1. Let \(T(A, \phi) \) be the operator whose kernel is given by (1), and \(T(A) \) the operator with kernel \(A(x, y) \). We suppose that \(A \) is a locally integrable function on \(\mathbb{R}^d \times \mathbb{R}^d \) satisfying condition (2) and that \(\phi \) belongs, say, to \(S(\mathbb{R}^d) \). We shall consider \(T(A) \) and \(T(A, \phi) \) as densely defined operators on \(L^2(\mathbb{R}^d) \). Suppose also that \(G \) is generated by \(g_0 > 1 \).

The following two lemmas provide the basic estimates. The proof of the first follows a technique of Peller [10], while the second is a straightforward computation.

Lemma 1. Consider \(E = \{(x, y) \mid 3\sqrt{d} \leq |x - y| \leq 3\sqrt{d^2}g_0^2\} \), and let \(\chi(x, y) \) be the characteristic function of some set \(E \supset E \). Then

\[||T(A, \phi)||_{C_1} \leq C a_1(A)||\phi||_{\mathcal{B}_1}^d \]

where \(a_1(A) = ||T(A)||_{C_1} \) (as everywhere below, \(C \) denotes a universal constant, not necessarily the same in different inequalities).