Inverse Scattering in One-Dimensional Nonconservative Media

Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee

Dedicated to M.G. Krein, one of the founding fathers of inverse scattering theory.

The inverse scattering problem arising in wave propagation in one-dimensional nonconservative media is analyzed. This is done in the frequency domain by considering the Schrödinger equation with the potential $ikP(x) + Q(x)$, where k^2 is the energy and $P(x)$ and $Q(x)$ are real integrable functions. Using a pair of uncoupled Marchenko integral equations, $P(x)$ and $Q(x)$ are recovered from an appropriate set of scattering data including bound-state information. Some illustrative examples are provided.

0. INTRODUCTION

The wave propagation in a one-dimensional medium, where energy absorption or generation may occur, can be described in the frequency domain by the generalized Schrödinger equation

$$\psi^{\prime\prime}(k, x) + k^2 \psi(k, x) = [ikP(x) + Q(x)] \psi(k, x), \quad x \in \mathbb{R}, \quad (0.1)$$

where \mathbb{R} is the real line, the prime denotes the derivative with respect to the spatial coordinate x, k is the wavenumber, k^2 is the energy, $P(x)$ represents the energy absorption or generation, and $Q(x)$ represents the restoring force density. By changing the sign of $P(x)$ in (0.1) we obtain the associated equation

$$\psi^{\prime\prime}(k, x) + k^2 \psi(k, x) = [-ikP(x) + Q(x)] \psi(k, x), \quad x \in \mathbb{R}, \quad (0.2)$$

whose scattering data are to be used along with the scattering data from (0.1) in order to recover $P(x)$ and $Q(x)$.

Let $L^p_q(I)$ denote the measurable functions $f(x)$ such that $\int_I dx (1 + |x|)^q |f(x)|^p$ is finite. Note that we have $L^p(I) = L^p_0(I)$. We will assume that $Q(x)$ is real valued and belongs to $L^1_1(\mathbb{R})$ and that $P(x)$ is real valued and satisfies $P \in L^1(\mathbb{R})$. We will use $||f||_p$ to denote the norm on $L^p(\mathbb{R})$ and write $||f||_{1,q}$ for $\int_{-\infty}^{\infty} dx (1 + |x|)^q |f(x)|$. We will later impose further restrictions on $P(x)$ and $Q(x)$.

The scattering solutions of (0.1) and (0.2) comprise those behaving like e^{ikx} or e^{-ikx} as $x \to \pm \infty$, and such solutions occur when $k^2 > 0$. Among the scattering solutions are the
Jost solution from the left $f_1^\pm (k, x)$ and the Jost solution from the right $f_r^\pm (k, x)$ satisfying the boundary conditions

$$
 f_1^\pm (k, x) = \begin{cases}
 e^{ikx} + o(1), & x \to +\infty, \\
 \frac{1}{T^\pm (k)} e^{ikx} + \frac{L^\pm (k)}{T^\pm (k)} e^{-ikx} + o(1), & x \to -\infty,
\end{cases} \quad (0.3)
$$

$$
 f_r^\pm (k, x) = \begin{cases}
 \frac{1}{T^\pm (k)} e^{-ikx} + \frac{R^\pm (k)}{T^\pm (k)} e^{ikx} + o(1), & x \to +\infty, \\
 e^{-ikx} + o(1), & x \to -\infty,
\end{cases} \quad (0.4)
$$

where $T^\pm (k)$ is the transmission coefficient and $R^\pm (k)$ and $L^\pm (k)$ are the reflection coefficients from the right and from the left, respectively. The scattering matrices $S^+ (k)$ and $S^- (k)$ associated with (0.1) and (0.2), respectively, are given by

$$
 S^\pm (k) = \begin{bmatrix} T^\pm (k) & R^\pm (k) \\ L^\pm (k) & T^\pm (k) \end{bmatrix}.
$$

Let $[F; G] = FG' - F'G$ denote the Wronskian. The scattering coefficients can be expressed in terms of Wronskians of the Jost solutions of (0.1) and (0.2) as

$$
 [f_1^\pm (k, x); f_r^\pm (k, x)] = \frac{-2ik}{T^\pm (k)}, \quad k \in \mathbb{C}^+ ,
$$

$$
 [f_1^\pm (k, x); f_r^\mp (-k, x)] = \frac{2ik L^\pm (k)}{T^\pm (k)} = -\frac{2ik R^\mp (-k)}{T^\pm (-k)}, \quad k \in \mathbb{R},
$$

$$
 [f_r^\pm (k, x); f_1^\mp (-k, x)] = -\frac{2ik R^\pm (k)}{T^\pm (k)} = \frac{2ik L^\mp (-k)}{T^\pm (-k)}, \quad k \in \mathbb{R}.
$$

We have [JJ76a,AKV97]

$$
 S^\pm (-k) = S^\mp (k), \quad k \in \mathbb{R},
$$

$$
 S^\pm (k) S^\mp (-k)^t = I, \quad k \in \mathbb{R},
$$

where I is the 2×2 unit matrix, the superscript t denotes the matrix transpose, and the overline denotes complex conjugation. From (0.7) we get

$$
 L^\pm (k) T^\mp (-k) + T^\pm (k) R^\mp (-k) = 0, \quad k \in \mathbb{R},
$$

$$
 T^\pm (k) T^\mp (-k) = 1 - R^\pm (k) R^\mp (-k), \quad k \in \mathbb{R}.
$$

The bound-state solutions of (0.1) and (0.2) are those nontrivial solutions belonging to $L^2 (\mathbb{R})$. Such solutions correspond to the values of $k \in \mathbb{C}^+$ at which the Jost solutions