ON THE NONEXISTENCE OF A CONTINUOUS LINEAR OPERATOR
OF A CERTAIN FORM FROM S TO $H(D)$

Leonid Brevdo

In this note we show that a continuous linear operator of a certain form from the space S of infinite sequences into the space $H(D)$ of analytic functions in a domain D does not exist.

Let D be an arbitrary domain on the complex plane, and let $\{a_k\}_{k=1}^{\infty} \in D$ be a fixed sequence of distinct points which has no limit points in D. Using the Weierstrass procedure (see [2]), one can construct for any sequence of numbers $\xi = \{\xi_k\}_{k=1}^{\infty}$ a function $f(z) = \xi_k$ analytic in D such that $f(a_k) = \xi_k$ for $k = 1, 2, ...$. We denote by S a linear topological space of sequences with the topology of coordinate convergence, and by $H(D)$ a linear topological space of functions analytic in D with the topology of uniform convergence on every compact subset K of D.

Statement. There does not exist a continuous linear operator A from S into $H(D)$ such that $A(\{\xi_k\}_{k=1}^{\infty}) = f_\xi(z)$ with $f_\xi(a_k) = \xi_k$, $k \geq 1$.

Proof. We assume on the contrary that such an operator exists. For each $k \geq 1$ we denote by $e_k \in S$ a sequence whose k-th component is unity and the remaining components are zero. Let $A(e_k) = \Phi_k(z)$. Since by definition $\Phi_k(a_k) = 1$, we have $\Phi_k(z) \neq 0$. Since A is linear, we can write

$$A(\{\xi_k\}_{k=1}^{\infty}) = A \left(\sum_{k=1}^{n} \xi_k e_k \right) = \sum_{k=1}^{n} \xi_k \Phi_k(z).$$

The sequence of elements $s_n = (\xi_1, \xi_2, ..., \xi_n, 0, 0, ...)$ converges in S to the element $\xi = \{\xi_k\}_{k=1}^{\infty}$. Therefore, the sequence of functions $\sum_{k=1}^{n} \xi_k \Phi_k(z)$ converges to the function $f_\xi(z)$ in $H(D)$. In other words

$$f_\xi(z) = \sum_{k=1}^{\infty} \xi_k \Phi_k(z),$$

where the series converges uniformly on every compact subset K of D. In particular, for every sequence $\{\xi_k\}_{k=1}^{\infty} \in S$ and for any point $z \in D$ the series

$$\sum_{k=1}^{\infty} \xi_k \Phi_k(z)$$

converges...
converges to a finite value. Now, assuming that infinitely many functions \(\Phi_{kj} \) are not zero at some point \(z_0 \in D \), we can construct a sequence \(\{\xi_k\}_{k=1}^{\infty} \) as follows: \(\xi_{kj} = 1/\Phi_{kj}(z_0) \) for those \(k_j \) for which \(\Phi_{kj}(z_0) \neq 0 \), and \(\xi_k = 0 \) for the rest of the indices. Then for this sequence we would have

\[
\sum_{k=1}^{\infty} \xi_k \Phi_k(z_0) = 1 = \infty.
\]

(4)

Consequently, only a finite number of functions \(\Phi_k(z) \) can be different from zero at every point of the domain \(D \).

Let \(B \) be a closed disk belonging to \(D \). To every point \(z \) in \(B \) corresponds a finite subset \(\{ \Phi_{k_1}, \Phi_{k_2}, \ldots, \Phi_{k_j} \} \) of the set of functions \(\{ \Phi_k \}_{k=1}^{\infty} \) that includes only those functions that are not zero at \(z \). This correspondence maps the continuum set of points of the disk \(B \) into the set of all finite subsets of the countable set of functions \(\{ \Phi_k \}_{k=1}^{\infty} \), which is itself countable. Therefore, by the Luzin theorem there exists a subset \(\{ \Phi_{k_1}, \Phi_{k_2}, \ldots, \Phi_{k_j} \} \) whose preimage \(E \subset B \) in this mapping has cardinality of continuum. This means that all the functions belonging to the set

\[
\{ \Phi_{k_1}, \Psi_{k_2}, \ldots, \Phi_{k_j} \}
\]

are zero on the set \(E \). Since the set \(E \) contains infinitely many points, it has limit points in \(B \). From the uniqueness theorem it follows that all the functions from the set (5) are identically zero on \(B \). Since \(D \) is connected, all these functions are zero on \(D \). However, \(\Phi_k(a_k) = 1 \) holds for all \(k \geq 1 \). The resulting contradiction proves the statement.

Corollary. Let \(A \) be a continuous linear operator from \(S \) to \(H(D) \). Then the dimension of the image \(\text{Im}(A) \) of \(A \) is finite.

Proof. From the proof of the Statement it follows that if \(A(e_k) = \Phi_k(z) \), \(k \geq 1 \), then \(\Phi_k(z) \neq 0 \) only for a finite set of indices \(k_j \).

Our result can be related to interpolation in Banach spaces of analytic functions. Let \(D \) be a unit disk. For \(1 \leq p \leq \infty \), we denote by \(H^p \) a Banach space of analytic functions \(f \) in \(D \) for which the functions \(f(0) = f(re^{i\theta}) \) are bounded in \(L^p \)-norm as \(r \rightarrow 1 \), Hoffman [3]. Let \(\{a_k\}_{k=1}^{\infty} \) be a sequence of points in the open unit disk. Following Shapiro and Shields [4], with each \(f \in H^p \) the sequence of weighted values

\[
T^p f = \{ f(a_k) (1 - |a_k|) \}^{1/p}_{k=1} \leq \infty
\]

(6)

is associated. The sequence \(\{a_k\}_{k=1}^{\infty} \) is called interpolating by functions of class \(H^p \) (or simply interpolating when \(p = \infty \)) if \(l^p \subset T^p H^p \), [4]. Here, as always, \(l^p \) denotes the space of sequences \(\{c_k\}_{k=1}^{\infty} \) for which \(\sum |c_k|^p < \infty \) for \(1 \leq p < \infty \); and sup \(|c_k| < \infty \) for \(p = \infty \). It was shown by Carleson [1] that a necessary and sufficient condition for \(\{a_k\}_{k=1}^{\infty} \) to be an interpolating sequence is that there exists a positive number \(\delta \) such that

\[
\prod_{n \neq k} |(a_k - a_n)/(1 - \overline{a}_n a_k)| \geq \delta, \quad k \geq 1.
\]

(7)

Generalization of this result to spaces \(H^p \) was given in [4], where it was shown that for any given value of \(p \) \((1 \leq p \leq \infty) \) \(T^p H^p = l^p \) if and only if the sequence \(\{a_k\}_{k=1}^{\infty} \) satisfies condition (7).