Schatten Class Hankel Operators on the Bergman space

Dechao Zheng

In this paper we characterize Hankel operators H_f and H_γ on the Bergman spaces of bounded symmetric domains which are in the Schatten p-class for $2 \leq p < \infty$ and f in L^2 using a Jordan algebra characterization of bounded symmetric domains and properties of the Bergman metric.

Let \mathcal{D} be a bounded symmetric (Cartan) domain of rank r with its standard (Harish-Chandra) realization in \mathbb{C}^n ([8],[7],[12]). We may assume that \mathcal{D} is circled, irreducible and contains the origin $0 \in \mathbb{C}^n$. Let G denote the connected component of the biholomorphic automorphism group of \mathcal{D} and K its isotropic group of 0 in G. Then $\mathcal{D} = G/K$. For a suitable subspace C^r of \mathbb{C}^n, as in [8] $\mathcal{D} \cap C^r$ is a polydisk \mathcal{D}^r and \mathcal{D} can be written as a union of polydisks $K\mathcal{D}^r$, where K is considered as a subgroup of $U(n)$ of \mathbb{C}^n. So we have

$$\mathcal{D}^r \hookrightarrow \mathcal{D} \hookrightarrow \mathbb{C}^n$$

where $i: \mathcal{D}^r \hookrightarrow \mathcal{D}$ is a holomorphic embedding.

For $d\Lambda(w)$ the usual Euclidean volume measure on $\mathbb{C}^n=\mathbb{R}^{2n}$, normalized so that $A(\mathcal{D})=1$, we consider the Hilbert space of square-integrable complex-valued functions $L^2 = L^2(\mathcal{D},d\Lambda)$ and the Bergman space $L_a^2 = L^2_a(\mathcal{D},d\Lambda)$ of holomorphic functions in L^2. Since the evaluation at any fixed point of \mathcal{D} is a bounded functional on L_a^2, there is a function $K(z,w)$ in L_a^2 such that

$$f(z) = \langle f, K(z, \cdot) \rangle$$

for all f in L_a^2.

In fact for any orthogonal basis $\{e_n(w)\}$, $K(z,w)$ can be represented as

$$K(z,w) = \sum_{k=1}^{\infty} e_n \overline{e_n}(w)$$

where the sum converges pointwise to $K(z,w)$.

We recall that the Bergman metric $H_z(u,v)$ for z in \mathcal{D} and u, v in \mathbb{C}^n is defined by

$$H_z(u,v) = \sum_{i,j} \frac{\partial}{\partial z_i} \frac{\partial}{\partial \bar{z}_j} \log K(z,z) u_i \overline{v_j}$$

Then \mathcal{D} is a complete Hermitian symmetric space of noncompact type with the Bergman metric which gives the usual topology on \mathcal{D}. By definition, the Bergman distance $\beta(z,w)$ is given by

$$\beta(z,w) = \inf \int_0^1 \sqrt{H_{\tau(t)}(\gamma'(t),\gamma'(t))} \, dt$$

where the inf is taken over all geodesics in \mathcal{D} which connect z and w.
For a bounded symmetric domain, for fixed \(w \) in \(\mathcal{D} \), as \(z \) goes to the topological boundary,

\[
K(z, z) \to +\infty
\]

and

\[
\beta(z, w) \to +\infty.
\]

Moreover \(K(z, w) \) and \(\beta(z, w) \) have the following invariance properties

\[
K(ka, kb) = K(a, b)
\]

for all \(k \) in \(K \) and

\[
\beta(ga, gb) = \beta(a, b)
\]

for all \(g \) in \(G \). For each \(a \) in \(\mathcal{D} \), there is a biholomorphic automorphism \(\phi_a \) of \(\mathcal{D} \) (\(\phi_a \) in \(G' \)) with the properties

1. \(\phi_a(a) = 0 \)
2. \(\phi_a \circ \phi_a = Id. \)

\(\phi_a \) is determined uniquely up to composition with an element of \(K \).

An operator \(T \) on Hilbert space \(H \) is said to be in the Schatten p-class if \(T^*T \) is compact

\[
\sum_{i=1}^{\infty} s_i^p < \infty
\]

where \((T^*T)^{1/2} = \sum_{i} s_i e_i \otimes e_i \) if \(\{e_i\} \) are an orthogonal basis of \(H \). We use \(S_p \) to denote the set of all operators in Schatten p-class for \(p > 0 \).

Let \(P \) be the self-adjoint projection from \(L^2 \) onto \(L^2_0 \). For \(f \) and \(g \) in \(L^2 \), we consider the multiplication operator \(M_f \) on \(L^2 \) given by \(M_fg = fg \) and the Hankel operator \(H_f \) on \(L^2_0 \) given by \(H_f = (I - P)M_fP \) and the Toeplitz operator \(T_f \) on \(L^2_0 \) given by \(T_f = PM_fP \). The commutator \([M_f, P] = M_fP - PM_f\) is densely defined on \(L^2 \) and it is easy to check that

\[
[M_f, P] = H_f \bigoplus (-H_f^*).
\]

So studying the properties of \([M_f, P]\) is equivalent to studying the properties of both \(H_f \) and \(H_f^* \).

The aim of this paper is to characterize those functions \(f \) such that both \(H_f \) and \(H_f^* \) are in \(S_p \) for \(2 \leq p < +\infty \). We prove a conjecture of K.Zhu, proved by him for the case of unit ball in \([14]\). It was shown in \([1]\) that for holomorphic function \(f \) on the unit disk \(D \), \(H_f \) is in \(S_p \) for \(1 \leq p < \infty \) if and only if \(f \) is in the Besov space \(B_p \). We will present two proofs. One proof uses Jordan theoretic characterization of bounded symmetric domains. i.e. every bounded symmetric domain \(\mathcal{D} \) can be realized as the open unit ball of a uniquely determined Jordan triple system \(V \approx C^n \) for the so called spectral norm ([10],[12]). The second proof will reduce the problem to the polydisk case using the fact that a holomorphic mapping between two bounded symmetric domains decreases the Bergman metric in some sense. So inspired by Zhu’s method in \([14]\), we can completely prove his conjecture on the bounded symmetric domain.