d-Cube Decompositions of $K_n \setminus K_m$

Peter Adams1, Darryn E. Bryant$^{1 \dagger}$, Saad I. El-Zanati2, and Charles Vanden Eynden2

1 Department of Mathematics, The University of Queensland, Queensland 4072, Australia
2 Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA

Abstract. Necessary conditions on n, m and d are given for the existence of an edge-disjoint decomposition of $K_n \setminus K_m$ into copies of the graph of a d-dimensional cube. Sufficiency is shown when $d = 3$ and, in some cases, when $d = 2^t$. We settle the problem of embedding 3-cube decompositions of K_m into 3-cube decompositions of K_n, where $n \geq m$.

1. Introduction

We denote the sets of vertices and edges of a graph G by $V(G)$ and $E(G)$, respectively. For $m \leq n$, let $K_n \setminus K_m$ denote the subgraph of K_n induced by $E(K_n) \setminus E(K_m)$; call $K_n \setminus K_m$ a complete graph of order n with a hole of size m. Let K'_x be the complete r-partite graph with exactly x vertices in each part. Undefined graph theoretical terminology can be found in [1].

The d-cube is the graph Q_d whose vertex set is the set of all binary d-tuples, and whose edge set consists of all pairs of vertices which differ in exactly one coordinate. It is easy to see that Q_d has 2^d vertices, $d2^{d-1}$ edges and is d-regular and bipartite.

Let G, H and H' be graphs with $G \subseteq H \subseteq H'$. A G-decomposition of H is a set $\Gamma = \{G_1, G_2, \ldots, G_t\}$ of edge-disjoint subgraphs of H, each of which is isomorphic to G, such that the edge sets of the G_i's partition the edge set of H. In this case, we say G divides H and write $G \mid H$. If Γ'' is a G-decomposition of H' such that $\Gamma \subseteq \Gamma''$, then Γ is said to be embedded in Γ''.

The decomposition of graphs, and embeddings of graph decompositions, have been and remain the focus of a great deal of research (see [2] for a thorough discussion of the subject of graph decompositions). In particular, K_k-decompositions of K_n (see [2]) and C-decompositions of K_n, where C is a cycle of given length [11],

* Research of P.A. and D.E.B. supported by Australian Research Council grant A49532750
† Research of D.E.B. supported by Australian Research Council grant ARCPDF015G
‡ Research of S.I.E. and C.V.E. supported by Illinois State University Research Office
have received much attention. For an excellent reference on cycle decompositions and embeddings of cycle decompositions, the reader is directed to [11].

G-decompositions of $K_n \backslash K_m$ can lead to results on embeddings of graph decompositions. Some results on the decomposition of $K_n \backslash K_m$ into k-cycles can be found in [9] (when k and m are both odd), [5] (when k is odd and m is even) and [3] (when $k \leq 14$). K_k-decompositions of $K_n \backslash K_m$ are investigated in [8].

The decomposition of K_n into d-cubes was first studied by Kotzig [10]. Several results on the decomposition of $K_{m,n}$ into d-cubes are presented in [6, 7, 13]. The decomposition of complete graphs and of complete bipartite graphs into 3-cubes and into 4-cubes is investigated in [4].

In this paper, we give necessary conditions (on n, m and d) for the existence of a Q_d-decomposition of $K_n \backslash K_m$. We prove that these conditions are sufficient in the case $d = 3$ and in some cases when $d = 2^t$. We also show some embedding results.

In 1981, Kotzig [10] proved the following three results concerning Q_d-decompositions of K_n:

Theorem 1.1. If d is even and there is a Q_d-decomposition of K_n, then $n \equiv 1 \pmod{d2^d}$.

Theorem 1.2. If d is odd and there is a Q_d-decomposition of K_n, then either

(a) $n \equiv 1 \pmod{d2^d}$ or
(b) $n \equiv 0 \pmod{2^d}$ and $n \equiv 1 \pmod{d}$.

Theorem 1.3. There is a Q_d-decomposition of K_n if $n \equiv 1 \pmod{d2^d}$.

We will need the following two theorems from [4] (Theorem 1.4 first appeared in [12].)

Theorem 1.4. There exists a 3-cube decomposition of K_n if and only if $n \equiv 1$ or $16 \pmod{24}$.

Theorem 1.5. For $m \leq n$, a 3-cube decomposition of $K_{m,n}$ exists if and only if $m \equiv n \equiv 0 \pmod{3}$, $mn \equiv 0 \pmod{4}$ and $m \geq 4$.

We will also make use of the following two theorems. A proof of Theorem 1.6 can be found in [6], and Theorem 1.7 is proved in [13].

Theorem 1.6. Let q be a nonnegative integer and let $d = 2^t$ where t is a positive integer. Then, there exists a Q_d-decomposition of $K_{2t+q, x2^{t-1}}$ for all positive integers x.

Theorem 1.7. If $d \geq 2$, then there exists a Q_d-decomposition of $K_{x2^{t-1}, y2^{t-1}}$ for all positive integers x and y.

Corollary 1.8. Let d, m and n be positive integers with $m \leq n$. If $n \equiv m \equiv 1 \pmod{d2^d}$, then there exists a d-cube decomposition of K_m embedded in a d-cube decomposition of K_n.