A New Recursive Theorem on n-Extendibility

Tsuyoshi Nishimura
Department of Mathematics, Shibaura Institute of Technology, Fukasaku, Omiya 330, Japan

Abstract. A graph G having a 1-factor is called n-extendible if every matching of size n extends to a 1-factor. Let G be a 2-connected graph of order $2p$. Let $r > 0$ and $n > 0$ be integers such that $p - r > n + 1$. It is shown that if $G \setminus S$ is n-extendible for every connected subgraph S of order $2r$ for which $G \setminus S$ is connected, then G is n-extendible.

We deal only with finite simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $A \subset V(G)$, $G \setminus A$ is the subgraph of G induced by $V(G) \setminus A$. If a subset A induces a connected subgraph, then A is said to be connected. Moreover, if A is an empty set, then it is considered to be connected. If A and B are disjoint subsets of $V(G)$, then $E(A, B)$ denotes the set of edges with one end in A and the other in B. If H is a subgraph and v is a vertex, we may write $E(v, H)$ and $G \setminus H$ instead of $E(\{v\}, V(H))$ and $G \setminus V(H)$, respectively. For $v \in V(G)$, $N_G(v)$ denotes the neighborhood of v. For $e \in E(G)$, $V'(e)$ is the set of endvertices of e. Furthermore, let M be a matching (a set of independent edges) of G. $V'(M)$ denotes $\bigcup_{e \in M} V'(e)$. Let $n \geq 0$ and $p > 0$ be integers with $n \leq p - 1$ and let G be a graph with $2p$ vertices having a 1-factor (a perfect matching). Then G is said to be n-extendible if every matching of size n in G extends to a 1-factor. In particular, G is 0-extendible iff G has a 1-factor. Furthermore, G is said to be (r, n)-extendible if every connected subset S of order $2r$ is n-extendible. And G is said to be $[r, n]$-extendible if $G \setminus S$ is n-extendible for every connected subset S of order $2r$. Other terminology on graphs can be found in [1].

In [5], we proved the following recursive theorems on extendibility.

Theorem A. Let r and n be integers with $r > n > 0$. Then every (r, n)-extendible graph is $(r + 1, n + 1)$-extendible.

Theorem B. Let p, r and n be integers with $r > 0$ and $p - r > n \geq 0$. Then every connected $[r, n]$-extendible graph of order $2p$ is $[r - 1, n]$-extendible.

Note that a connected graph G of even order is $(|G|/2, n)$-extendible iff G is n-extendible. Furthermore, a graph G is $[0, n]$-extendible iff G is n-extendible. Therefore these theorems are natural extensions of the following theorems in [3] and [4], respectively.
Theorem C. Let G be a connected graph of order $2p$ ($p \geq 3$), and let r and n be integers such that $1 \leq n < r < p$. If for some integer r, every induced connected subgraph of order $2r$ is n-extendible, then G is n-extendible.

Theorem D. Let G be a connected graph of order $2p$. Let r and n be positive integers such that $p - r \geq n + 1$. If $G \setminus S$ is n-extendible for every connected subset S of order $2r$, then G is n-extendible.

The motivation for Theorems A–D is the following theorem due to Sumner [7] on the existence of a 1-factor in a graph in terms of the existence of 1-factors in certain subgraphs.

Theorem E. Let G be a connected graph of order $2p$ ($p > 1$). If for some integer r with $1 < r \leq p$ every connected induced subgraph of G of order $2r$ has a 1-factor, then G has a 1-factor.

Very recently, Enomoto [2] weakened the condition of the above theorem for a 2-connected graph.

Theorem F. Let p and r be integers with $0 < r < p - 1$ and let G be a 2-connected graph of order $2p$. If $G \setminus S$ has a 1-factor for every connected subset S of order $2r$ for which $G \setminus S$ is connected, then G has a 1-factor.

Moreover, Enomoto showed that all conditions of Theorem F are weakest possible. The purpose of this paper is to present a similar recursive result on n-extendibility that is an extension of Theorems C and D.

Theorem 1. Let G be a 2-connected graph of order $2p$. Let $r \geq 0$ and $n > 0$ be integers such that $p - r \geq n + 1$. If $G \setminus S$ is n-extendible for every connected subset S of order $2r$ for which $G \setminus S$ is connected, then G is n-extendible.

Note that even when $n = 0$, the above theorem is not exactly the same as Theorem F. Theorem F requires $p \geq r + 2$, whereas $p \geq r + 1$ in Theorem 1 if $n = 0$. Moreover, the connectedness condition cannot be weakened. For example, let K_{2n+2} and K'_{2n+2} be two disjoint complete graphs with order $2n + 2$. Let $u \in V(K_{2n+2})$ and $v \in V(K'_{2n+2})$. Add an edge uv between K_{2n+2} and K'_{2n+2}. Let G be the resulting graph. Now we can easily check that $G \setminus S$ is n-extendible for every connected subset S of order $2n + 2$ for which $G \setminus S$ is connected. It is obvious however that G is not n-extendible since G cannot have a 1-factor which contains uv.

A graph G is called (r, n)-extendible if $G \setminus S$ is n-extendible for every connected subset S of order $2r$ for which $G \setminus S$ is connected. From this definition it is seen that if a connected graph is $[r, n]$-extendible or $(|G|/2 - r, n)$-extendible, then it is (r, n)-extendible and that a graph is $(0, n)$-extendible if it is n-extendible. Thus, to prove Theorem 1, it suffices to show the following theorem, which is an extension of Theorem B.

Theorem 2. Let p, r and n be integers with $r > 0$ and $p - r > n > 0$. Then every 2-connected (r, n)-extendible graph of order $2p$ is $(r - 1, n)$-extendible.