A Model Checker for Linear Time Temporal Logic

Michael Fisher
The TEMPLE Group, Department of Computer Science, University of Manchester, UK

Keywords: Temporal logic; Program verification; Model checking

Abstract. This report describes the design and implementation of a model checker for linear time temporal logic. The model checker uses a depth-first search algorithm that attempts to find a minimal satisfying model and uses as little space as possible during the checking procedure. The depth-first nature of the algorithm enables the model checker to be used where space is at a premium.

1. Introduction

Temporal logic has been widely used for the specification and verification of reactive systems. It has been successfully used to describe verifiable properties of state-machines derived from practical applications [CES83, BCD84, GoB88]. In this report we consider the verification of temporal properties of such state-machines through model-checking [CES83] (also known as satisfiability checking). Using this approach, a finite state-machine, often derived from some practical system, is checked to see if it satisfies various properties represented by temporal formulae. The satisfaction of these properties by the state-machine generally implies that the original system satisfies such properties.

In this report we consider a model checking algorithm for linear time temporal logic. We will begin by describing the type of logic and the definitions of satisfiability and model checking used here.

1 This work was supported both by Alvey under grant PRJ/SE/054 (SERC grant GR/D/57942) and by ESPRIT under Basic Research Action 3096 (SPEC).
Correspondence and offprint requests to: M. Fisher, The TEMPLE Group, Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
2. Temporal Logic and Model Checking

Temporal logic is a derivative of modal and tense logics that has been developed for use in the description of reactive computer systems [Pnu77]. Propositional temporal logic can be seen as classical propositional logic extended with various modalities. Commonly, these are \Diamond, \Box and \circ. The intuitive meaning of these connectives is as follows: $\Diamond \varphi$ is true if φ is true sometime in the future; $\Box \varphi$ is true if φ is true always in the future; and $\circ \varphi$ is true if φ is true at the next moment in time.

Obviously, the model of time used will affect the meaning of such connectives. For example, if we consider time to be a dense ordering of "moments", then we cannot use the \circ operator as there is no distinct "next moment". If we think of the future as being a branching structure, then the meaning of \Diamond must be clarified so that we know whether $\Diamond \varphi$ means that φ must be true on some path in the future, or on all paths in the future. Thus there is a great variety of such logics, including dense logics [BKP86], branching logics [Emil82] and past-time logics [LPZ85], many of which can be placed in a single framework [Fis89].

In this report we will only consider a model of time that is linear and discrete, and allows statements about the present and future. The model structure for such a logic can be given as

$$\mathcal{M} = (S, \mathcal{N}, \pi)$$

where S is a set of states, \mathcal{N} is an infix binary relation on states, and π is a mapping from states to sets of atomic propositions. Thus, given a set of basic propositions $PROP$, and a state s, $\pi(s)$ is the set of propositions (a subset of $PROP$) that are true in state s. The relation \mathcal{N} is the "next-time" relation. It is constrained to define a linear sequence of states such that any given state is only related by \mathcal{N} to at most one "next" state.

We give an interpretation for a temporal statement in a model \mathcal{M}, and at a particular state s. For example, the semantics of the \circ operator is simply

$$\langle \mathcal{M}, s \rangle \models \circ \varphi \quad \text{iff} \quad \forall t \in S. \text{ if } s \mathcal{N} t \text{ then } \langle \mathcal{M}, t \rangle \models \varphi$$

The particular temporal language we use in this report consists of the connectives of standard propositional logic together with the unary operators \circ and \Diamond, and the binary operators \setminus and \cdot. The informal semantics of these operators are as follows: both $\circ \varphi$ and $\Diamond \varphi$ mean that φ must occur in the next state, the difference being that if there is no next state, $\circ \varphi$ is true, while $\Diamond \varphi$ is false; $\varphi \setminus \psi$ means that φ must be true up to a point in the future where ψ occurs, or always in the future if ψ never occurs; $\varphi \cdot \psi$ is similar $\varphi \setminus \psi$, the only difference being that with the \cdot operator, ψ must occur sometime in the future. The semantics of these operators is given below. (Note that the relation \mathcal{R} is the transitive closure of \mathcal{N}.)