A ΣΠΣ formula has the form $\bigvee \bigwedge \bigvee L_{uvw}$, where each L is either a variable or a negated variable. In this paper we study the computation of threshold functions by ΣΠΣ formulas. By combining the proof of the Fredman-Komlós bound [5, 10] and a counting argument, we show that for k and n large and $k \leq n/2$, every ΣΠΣ formula computing the threshold function T^n_k has size at least $\exp(\Omega(\sqrt{k} \ln k)) n \log n$. For k and n large and $k \leq n^{2/3}$, we show that there exist ΣΠΣ formulas for computing T^n_k with size at most $\exp(2\sqrt{k} \ln k) n \log n$.

1. Introduction

The kth threshold function, T^n_k, is the Boolean function on n variables that takes the value 1 precisely when there are at least k 1's in the input. Threshold functions play a central role in the investigation of the complexity of Boolean functions. Their complexity has been studied in various circuit models (see Boppana and Sipser [3], Wegener [18]). In this paper, upper and lower bounds are shown for computing T^n_k using ΣΠΣ formulas. A ΣΠΣ formula has the form $\bigvee \bigwedge \bigvee q$, where each S_{ij} is a subset of variables and their negations.

The complexity of computing the majority function, $T^n_{n/2}$, using constant depth circuits has been well studied [3]. Hastad [6] obtained a nearly optimal lower bound on the size of such circuits. His result implies that any depth d circuit computing T^n_k, $k \leq n/2$, has size $\exp(\Omega(k^{1/(d-1)}))$. Note that for small values of k Hastad’s results do not give superlinear lower bounds. Indeed, it has been shown by Newman, Ragde, and Wigderson [12] that for small values of k (bounded by a function of the form $(\log n)^r$, for some constant r), there do exist linear size constant depth circuits computing T^n_k.

The complexity of computing T^n_k using formulas over the basis \{AND, OR, NOT\} has also been studied. Paterson, Pippenger, and Zwick [13] showed that all
threshold functions can be computed by formulas of size $O(n^{4.57})$. Kharpchenko [9] showed that any such formula must have size at least $k(n-k+1)$. Hansel [7] and Krichevskii [11] showed that any formula computing T_k^n, $2 \leq k \leq n-1$, has size $\Omega(n \log n)$. In the monotone case, when only AND and OR gates are allowed, Valiant showed that the majority function can be computed by formulas of size $O(n^{5.3})$. Boppana [2] showed that T_k^n can be computed by monotone formulas of size $O(k^{4.3}n \log n)$. Radhakrishnan [14] showed that any monotone formula computing T_k^n, $2 \leq k \leq \frac{n}{2}$, has size at least $\left\lceil \frac{k}{2} \right\rceil n \log \left(\frac{n}{k-1} \right)$.

For large values of k, the results for constant depth circuits mentioned above provide nearly optimal bounds for constant depth formulas as well. However, the situation is different for small thresholds. While the $\Omega(n \log n)$ lower bound for T_2^n, due to Hansel and Krichevskii, is tight for $\Sigma \Pi \Sigma$ formulas, for larger thresholds such tight bounds are not known. To better understand the computation of T_k^n by constant depth formulas, Newman, Ragde, and Wigderson [12] considered $\Sigma \Pi \Sigma$ formulas computing T_k^n for small values of k. They showed, under the assumption that each $t_i = k$ (fanin of the AND gates is k), that every $\Sigma \Pi \Sigma$ formula computing T_k^n has size at least $\Omega(kn \log n)$. Under their assumption the problem is equivalent to the problem of covering the complete uniform hypergraph using k-partite hypergraphs. In this setting the problem was studied earlier by Snir [16], who obtained the same lower bounds. It was shown by Radhakrishnan [15] that the results of Snir can be improved using the techniques of Körner [10] and Fredman and Komlós [5]. The result of [15] implies that every $\Sigma \Pi \Sigma$ formula computing T_k^n, with the restriction that the fanin for the AND gates be k, has size $\Omega \left(\frac{\exp(k)}{k^{1/k}} n \log n \right)$. Using a random family of k-partite hypergraphs one may obtain $\Sigma \Pi \Sigma$ formulas of size $O(\sqrt{k} \exp(k) n \log n)$ [8, 5]. Thus, there exist almost tight bounds on the size of such restricted $\Sigma \Pi \Sigma$ formulas computing T_k^n.

In this paper, we consider $\Sigma \Pi \Sigma$ formulas computing T_k^n, $k \leq \frac{n}{2}$, with no restriction. That is, the t_i need not be k and the formula is permitted to contain negations. We obtain the following results. Suppose that k and n are large numbers.

Result 1.
If $k \leq n/2$, then every $\Sigma \Pi \Sigma$ formula computing T_k^n has size $\exp(\sqrt{k}/3)n$.

Result 2.
If $k < (\log \log n)^2$, then every $\Sigma \Pi \Sigma$ formula computing T_k^n has size at least $\exp(\delta(k)) n \log n$, where $\delta(k) = \frac{1}{30} \sqrt{\frac{k}{\ln k}}$.

Result 3.
If $k^{3/2}$ is an integer that divides n, then there exist $\Sigma \Pi \Sigma$ formulas computing T_k^n with size at most $\exp(2\sqrt{k} \log k) n \log n$. These formulas are monotone.

Note that for $k \geq (\log \log n)^2$ the lower bound claimed in the abstract is implied by Result 1. The main contribution of this work is Result 2, which combines an exponential dependence on k, suggested by the small depth circuit lower bounds for the majority function, with the $\Omega(n \log n)$ lower bound of Hansel and Krichevskii. The proof is based on the proof of the Fredman-Komlós bound presented by Körner [10]. Our proof, like Körner’s proof, makes use of the notion