Controllability by Completions of Partial Upper Triangular Matrices*

Leonid Gurvits,† Leiba Rodman,‡ and Tamir Shalom§

Abstract. Given an irreducible partial upper triangular \(n \times n \) matrix \(A \), it is shown that for every nonzero vector \(b \) there exists a completion \(A_c \) of \(A \) such that the pair \((A_c, b) \) is controllable. Various extensions and applications of this result are given.

Key words. Controllability, Completion of matrices, Pole assignment.

1. Introduction

We consider matrices with entries in a fixed field \(F \) (in this paper, either \(F = \mathbb{R} \), the real numbers, or \(F = \mathbb{C} \), the complex numbers). An \(n \times n \) matrix \(A \) is called partial if some entries of \(A \) are given, or specified (as elements in \(F \)), while the other entries are free independent variables that take values in \(F \). If the variable entries in a given partial matrix \(A \) assume specific values, then an \(n \times n \) matrix \(A_c \) with entries in \(F \) results; \(A_c \) is called a completion of \(A \).

Various completion problems of partial matrices have been, and continue to be, extensively studied, largely due to numerous applications. Typically, a completion problem consists of finding, if possible, a completion of a given partial matrix \(A \) with specified properties, or describing all such completions. The specified properties may be positive definiteness, having norm less than 1, having a given set of eigenvalues, etc. It is impossible to provide here a comprehensive list of papers on completion problems; we mention only [BGRS], [GRS], and [RS], which are the most relevant to the subject of this paper.

In this paper we focus on the controllability property. Recall that a pair \((A, b) \), where \(A \) is an \(n \times n \) matrix and \(b \) is an \(n \)-dimensional vector, is called controllable if \(b, Ab, \ldots, A^{n-1}b \) form a basis of \(F^n \). (Several other equivalent definitions are well known.) As a simple example, let \(A_0 = [a_{ij}]_{i,j=1}^n, \quad b_0 = [b_i]_{i=1}^n \), where \(a_{i,i+1} = 1 \) \((i = 1, \ldots, n - 1) \), \(a_{ij} = 0 \) if \(j - i \geq 2 \) (Hessenberg form), and \(b_1 = \cdots = b_{n-1} = 0 \), \(b_n = 1 \). The pair \((A_0, b_0) \) is obviously controllable. We can easily restate this fact.

* Date received: December 17, 1990. Date revised: June 1, 1992.
† Siemens Corporate Research, 755 College Road East, Princeton, New Jersey 08540, U.S.A.
‡ Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795, U.S.A. Partially supported by NSF Grant DMS-9000839 and by the United States-Israel Binational Fund.
§ Department of Computer Science, Columbia University, New York, New York 10027, U.S.A.
in terms of completions: Let \(A = [a_{ij}]_{i,j=1}^{n} \) be a partial matrix with \(a_{i,i+1} = 1 \) (\(i = 1, \ldots, n - 1 \)), \(a_{ij} = 0 \) if \(j - i \geq 2 \), and all other entries being variables. Then for every completion \(A_c \) of \(A \), the pair \((A_c, b_0)\) is controllable. As an easy corollary we obtain Mirsky's theorem [M]: Given two sets of numbers \(\alpha_1, \ldots, \alpha_n \) and \(\beta_1, \ldots, \beta_n \), there exists a matrix \(A \) with main diagonal \(\alpha_1, \ldots, \alpha_n \) and eigenvalues \(\beta_1, \ldots, \beta_n \) if and only if

\[
\alpha_1 + \cdots + \alpha_n = \beta_1 + \cdots + \beta_n
\]

(indeed, if this equality is satisfied, we take \(A_c \) to be a matrix in the Hessenberg form, and use the Pole-Assignment Theorem to find \(F \) such that \(A_c + b_0 F \) has prescribed eigenvalues; see Lemma 2.3 in Section 2).

This simple but important example serves as a motivation for the present work. We consider partial upper triangular matrices \(A_0 = [a_{ij}]_{i,j=1}^{n}, \) i.e., such that \(a_{ij} \) are specified for \(i \leq j \), and \(a_{ij} \) are variables for \(i > j \) (note that the diagonal elements \(a_{11}, \ldots, a_{nn} \) are given). Such a matrix \(A \) is called irreducible if all "northeastern" rectangular submatrices of sizes \(k \times (n - k) \) (\(k = 1, \ldots, n - 1 \)) are nonzero; in other words,

\[
[a_{ij}]_{1 \leq i \leq k \atop k+1 \leq j \leq n} \neq 0 \quad (k = 1, \ldots, n - 1).
\]

This concept plays a crucial role in the eigenvalue assignment problems of partial upper triangular matrices (see [BGRS] and [RS]).

A direct graph can be associated with a partial upper triangular matrix \(A_0 \) in a natural way. The vertices of the graph are \(\{1, \ldots, n\} \), and there is an edge \(j \to i \) if and only if either \(i > j \) or \(i \leq j \) and \(a_{ij} \neq 0 \).

We now state one of the main results of this paper.

Theorem 1.1. The following statements are equivalent for a given \(n \times n \) partial upper triangular matrix \(A \):

(i) \(A \) is irreducible.

(ii) The associated graph of \(A \) is connected, i.e., for any two vertices \(i, j \) there is a directed path from \(i \) to \(j \).

(iii) There exists a completion \(A_c \) of \(A \) such that the pair \((A_c, e_n)\), where

\[
e_n = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}
\]

is controllable.

(iv) for every \(b \in \mathbb{F}^n, b \neq 0 \), there exists a completion \(A_c \) of \(A \) such that the pair \((A_c, b)\) is controllable.

The proof of this result is given in the next section.

The connectivity of the associated graph of \(A \) can be interpreted informally as structural, or potential, controllability of a pair \((A, e_n)\). Thus, the equivalence of (ii) and (iii) in Theorem 1.1 means that structural controllability is equivalent to controllability.