Convergence of Gradient Curves on Hilbert Manifolds*

Halldór I. Eliasson

Introduction.

Let M be a complete Riemannian Hilbert manifold and f a real valued function on M, bounded below. We shall be satisfied throughout with differentiability class C^3 for M and f. Denote by G the gradient field of f. The gradient curve of f starting at some point x in M is the solution of

$$
\frac{d}{dt} \phi(t) = -G(\phi(t)), \quad \phi(0) = x.
$$

The basic and immediate information on the gradient curve is incorporated in:

1. \[f(\phi(t)) + \int_0^t \|G(\phi(\tau))\|^2 d\tau = f(\phi(0)), \]
2. \[d(\phi(b), \phi(a)) \leq \int_a^b \|G(\phi(t))\| dt, \]

with d the distance function on M. This implies, together with the completeness of M, that $\phi(t)$ is defined in $0 \leq t < \infty$ and moreover, we have a sequence $t_n \to \infty$, such that $\|G(\phi(t_n))\|$ converges to zero. The condition (C) of Palais and Smale [5] requires such a sequence $\phi(t_n)$ to have a limit point and the extension of Morse theory to Hilbert manifolds becomes possible. Thus it has not been necessary for Morse theory to settle the question, whether $\phi(t)$ actually converges for $t \to \infty$, which however, may become important in some concrete cases. In this paper we shall give a positive answer to this question under rather mild assumptions on the function f. We shall first treat the general case and then come to the specific case of energy of curves, which aroused our interest in the subject.

* This work was initiated and partially supported by the SFB at Bonn University.
Gradient Estimates

We consider the derivative df of f as a continuous linear form on the tangent space $T_x M$ at any point x in M. Then by definition of G:

$$df(v) = \langle G, v \rangle,$$

for all tangent vectors v in $T_x M$. Making use of the Levi-Civita connection on M, determined by the Riemannian metric $\langle \cdot, \cdot \rangle$, we can differentiate df and G covariantly [2] and obtain the relation:

$$Vdf(u, v) = \langle V_u G, v \rangle = \langle Hu, v \rangle,$$

at any point in M, where H is a bounded linear operator on $T_x M$ defined by $Hu = V_u G$ and called the Hessian of f. Usually H has only been defined at critical points, where it is independent of the connection. We shall use H as a C^1 section in $L(TM, TM)$.

H is a self-adjoint operator as Vdf is a symmetric form and we shall assume, that H is a Legendre operator or $\langle Hu, u \rangle$ a Legendre form [4]. Then the spectrum of H below some positive number, consists of finitely many eigenvalues with finite multiplicities. In particular H has finite index and finite nullity at each point of M. For some $\kappa \geq 0$ below the positive spectrum of H at some point x in M, we shall define $P^0 = P^0(x)$ to be the orthogonal projection of $T_x M$ onto the linear span of all eigenvectors of H, with eigenvalues in the interval $[-\kappa, \kappa]$. We shall denote by $P^- = P^-(x)$ the orthogonal projection of $T_x M$ onto the linear span of all eigenvectors of H with eigenvalues $< -\kappa$ and by P^+ the orthogonal projection of $T_x M$ onto the orthogonal complement of the sum of the images of P^0 and P^-. Choosing κ smaller than the smallest nonzero eigenvalue at a point x_0, we can, since H is continuous, find a neighbourhood U of x_0 in M, such that

$$\langle H P^+ v, P^+ v \rangle > \mu \|P^+ v\|^2,$$

$$-\kappa \|P^0 v\|^2 \leq \langle H P^0 v, P^0 v \rangle < \kappa \|P^0 v\|^2,$$

$$\langle H P^- v, P^- v \rangle \leq -\mu \|P^- v\|^2$$

holds, with $0 \leq \kappa < \mu$, for all $v \in T_x M$ and x in U. If the nullity of H at x_0 is null, then we may choose $\kappa = 0$; otherwise we must take $\kappa > 0$. It follows from the spectral theorem of self-adjoint operators, that the orthogonal projections are C^1 sections in the bundle of linear operators on tangent spaces of M over the neighbourhood U, since H is of class C^1 with its spectrum in the three disjoint intervals mentioned above. We shall call a neighbourhood U of some point x_0 in M, having the above properties, a regular κ, μ neighbourhood.