This paper investigates the minimal degree of polynomials $f \in \mathbb{R}[x]$ that take exactly two values on a given range of integers $\{0, \ldots, n\}$. We show that the gap, defined as $n - \deg(f)$, is $O(n^{\frac{1}{5}48})$. The maximal gap for $n \leq 128$ is 3. As an application, we obtain a bound on the Fourier degree of symmetric Boolean functions.

1. Introduction

We consider polynomials $f \in \mathbb{R}[x]$ that take only two values on the domain $\{0, \ldots, n\}$. For each n, we ask how small the degree of such a (nonconstant) polynomial can be. We may assume without loss of generality that the range of f is $\{0,1\}$. Since arbitrary prescribed values can be interpolated by a polynomial of degree at most n, we may assume that $\deg(f) \leq n$. Then f is uniquely determined, and $f \in \mathbb{Q}[x]$. We seek bounds on the gap between $\deg(f)$ and n.

More precisely, for any $n \geq 1$ and $a = (a_0, \ldots, a_n) = (f(0), \ldots, f(n)) \in \mathbb{Q}^{n+1}$, with $f \in \mathbb{Q}[x]$ of degree at most n, we define the gap of a as

$$\gamma(a) = n - \deg(f),$$

where the degree of any constant polynomial is taken to be zero. For $n \geq 1$, the maximal gap is

$$\Gamma(n) = \max_{a \in A_n} \gamma(a),$$

where

$$A_n = \{0,1\}^{n+1} \setminus \{(0, \ldots, 0), (1, \ldots, 1)\}.$$

As an example, if $a = (1,0, \ldots, 0)$, then f has at least n zeros (at 1,2, \ldots, n) and thus has degree at least n. But $\deg(f) \leq n$, so that $\deg(f) = n$ and $\gamma(a) = 0$.

Mathematics Subject Classification (1991): 68R05; 11B83, 11Y50, 11B39
In Section 2 we characterize the property \(\gamma(a) \geq r \) by \(r \) linear equations in \(a_0, \ldots, a_n \). Then we exhibit a family of vectors with gap one and note that only an exponentially small fraction of vectors has positive gap. The upper bound \(\Gamma(n) < n/2 \) is trivial. We show that \(\Gamma(n) = 0 \) if \(n+1 \) is prime; using a bound on the gap between consecutive primes, we then obtain \(\Gamma(n) = O(n^{0.548}) \) in general. We conjecture that, in fact, \(\Gamma(n) = O(1) \).

In Section 3 we introduce the notion of a folded vector. The characterization of the gap then leads to several infinite families of vectors, again with gap one, via the solution of certain Diophantine equations. In Section 4 we extend and combine these examples to obtain families with gap two or three, and then give further examples with gap one; the latter do not, however, give any new information about \(\Gamma \). In Section 5 we report on a computer search which determined all vectors with positive gap for \(n \leq 128 \); the largest gap is 3.

This research was motivated by work of Nisan and Szegedy [3]. They investigate the degree of polynomials in \(\mathbb{R}[x_1, \ldots, x_n] \) that interpolate (or approximate) a given Boolean function \(g : \{0,1\}^n \to \{0,1\} \). The smallest degree of such interpolating polynomials is the Fourier degree of \(g \). If \(g \) is symmetric, there is an associated function \(f : \{0, \ldots, n\} \to \{0,1\} \) whose interpolation problem is equivalent to the original one. Bounds on \(\Gamma(n) \) are thus equivalent to bounds on the Fourier degree of symmetric Boolean functions.

2. Bounds on the Gap

We begin by recalling a few basic facts from the theory of difference equations; see Graham, Knuth, and Patashnik [1] for a more complete discussion. Given \(g \in \mathbb{R}[x] \), we define its discrete derivative \(Dg \) by

\[
(Dg)(x) = (D^1g)(x) = g(x) - g(x - 1).
\]

For \(i \geq 2 \), we define the discrete derivative \(D^i g \) of order \(i \) inductively by

\[
D^i g = D(D^{i-1}g).
\]

Proposition 2.1. For \(g \in \mathbb{R}[x] \) and \(m \geq 1 \), the following hold:

(i) \((D^m g)(x) = \sum_{0 \leq j \leq m} (-1)^j \binom{m}{j} g(x - j) \).

(ii) If \(\deg(g) = m \), then \(\deg(Dg) = m - 1 \).

(iii) If \(g \) is constant, then \(Dg = 0 \).

(iv) If \(\deg(g) = m \), then \(D^m g \) is a nonzero constant.

(v) \(D^m g = 0 \iff \deg(g) < m \).

Proof. (i) follows by induction on \(m \); (ii) and (iii) follow immediately when \(g \) is written out as a sum of monomials; and (iv) and (v) follow from (ii) and (iii).

Now we characterize the gap \(\gamma(a) \) in terms of binomial sums.