A characterization of Wiener's algebra on locally compact groups

By

HANS G. FEICHTINGER

It is the purpose of this paper to show that the algebra $W(\mathbb{R})$, which has first been defined by N. Wiener, is the smallest among all Segal algebras on \mathbb{R} which are at the same time $C^0(\mathbb{R})$-modules with respect to pointwise multiplication. By means of a new characterization of $W(\mathbb{R})$ this result can be extended to general locally compact groups.

Our notation follows that of [2] and [3]. G denotes a locally compact group. In order to avoid trivialities we assume that G is nondiscrete. $K(G)$ shall denote the space of all continuous functions k with compact support ($\text{supp } k$). The Banach space $C^0(G)$ consists of all continuous functions on G vanishing at infinity. It is the closure of $K(G)$ with respect to the norm $\|f\|_\infty = \sup_{x \in G} |f(x)|$. The Haar measure of a measurable set $M \subseteq G$ shall be denoted by $|M|$. For $y \in G$ the left and right translation operators are defined by $L_y f(x) = f(y^{-1} x)$ and $R_y f(x) = f(xy^{-1}) \Delta^{-1}(y)$, Δ being the Haar module on G. For facts concerning Segal algebras the reader is referred to [2] and [3]. A Segal algebra $S(G)$ is a Banach module over $C^0(G)$ (with respect to multiplication), if g is in $S(G)$ for every $f \in S(G)$ and $g \in C^0$ and satisfies $\|fg\|_S \leq \|f\|_S \cdot \|g\|_\infty$. Finally let us recall that Wiener’s algebra $W(\mathbb{R})$ consists of all continuous functions f on \mathbb{R} satisfying

$$\|f\|_W = \sum_{n \in \mathbb{Z}} \max_{0 \leq x \leq 1} |f(n + x)| < \infty$$

(cf. [2], Chap. I, § 5, ex. iii). With the norm

$$\|f\|_W = \sup_{y \in \mathbb{R}} \|L_y f\|_W$$

$W(\mathbb{R})$ is a Segal algebra which is of course a $C^0(\mathbb{R})$-module.

Theorem 1. Let $S(\mathbb{R})$ be a Segal algebra on \mathbb{R} which is a $C^0(\mathbb{R})$-module. Then $S(\mathbb{R})$ contains Wiener’s algebra $W(\mathbb{R})$ and $\|f\|_S \leq C \|f\|_W$ holds for all $f \in W(\mathbb{R})$. Hence $W(\mathbb{R})$ is the smallest among all Segal algebras which are $C^0(\mathbb{R})$-modules.

Proof. Let $f \neq 0, f \in S(\mathbb{R})$ be given. Then there is some $k_1 \in K(\mathbb{R})$ with $f_1 := k_1 \cdot f \neq 0$, in particular f_1 is a continuous function in $S(\mathbb{R})$. Let U be an open set such that $|f_1(x)| \neq 0$ for all $x \in U$. Then there is some $h \in K(\mathbb{R})$, $h \neq 0$ with $0 \leq h(x) \leq 1$ and $\text{supp } h \subseteq U$. Consequently $f_2 := |f_1| \cdot h = f_1 \cdot h |f_1|/f_1$ is in $S(\mathbb{R})$, $h |f_1|/f_1$ being in
Moreover \(f_2 \) is positive. Thus we may choose an open set \(V \subseteq U \) with \(f_2(x) \geq \delta > 0 \) for all \(x \in V \). Let now \(k \in K(\mathbb{R}) \) be given. Without loss of generality we may suppose that \(k \) is positive. Then there is a finite sequence \((y_i)_{i=1}^n \subseteq \mathbb{R} \) with \(\text{supp} \, k = \bigcup_{i=1}^n y_i + V \). Hence
\[k(x) \leq \|k\|_\infty \delta^{-1} \sum_{i=1}^n L_{y_i} f_2(x) := f_3(x) \quad \text{for all } x \in \mathbb{R}. \]
This implies that \(k/f_3 \) is in \(K(\mathbb{R}) \) and that \(k = f_3 \cdot k/f_3 \) is in \(S(\mathbb{R}) \). In particular \(S(\mathbb{R}) \) contains a function \(g \in K(\mathbb{R}) \) with \(0 \leq g(x) \leq 1 \) and \(g(x) \equiv 1 \) on \([0, 1]\). Let now \(f \in W(\mathbb{R}) \) be given. Then with \(a_n(f) = \max_{0 \leq x \leq 1} |f(n + x)| \) we have for every \(x \in \mathbb{R} \)
\[|f(x)| \leq \sum_{n \in \mathbb{Z}} a_n(f) L_n g(x). \]
Since for \(f \in W(\mathbb{R}) \) the sum on the right hand converges to an element \(g_1 \in S(\mathbb{R}) \) with \(\|g_1\|_s \leq \sum_{n \in \mathbb{Z}} \max_{0 \leq x \leq 1} |f(n + x)| \|L_n g\|_s \leq \|f\|_W \|g\|_s \),
\[f = g_1 \cdot f/g_1 \] is in \(S(\mathbb{R}) \) and satisfies
\[\|f\|_s \leq \|g_1\|_s \|f/g_1\|_{\infty} \leq \|f\|_W \cdot \|g\|_s \leq C \|f\|_W \quad \text{with } C = \|g\|_s. \]

With some obvious modifications of the proof the above theorem is applicable to the generalization of Wiener's algebra to locally compact Abelian groups \(G \) which have a discrete subgroup \(\Gamma \) such that \(G/\Gamma \) is compact ([3], § 5, example v), in particular to \(G = \mathbb{R}^n \) (with \(\Gamma = \mathbb{Z}^n \), cf. [2], chap. I, § 5, example iii). If we denote these spaces by \(W(G) \) theorem 1 remains true.

In order to give a generalization of \(W(G) \) to arbitrary locally compact groups \(G \) (such that the characterization of theorem 1 extends to this generalization) we introduce a new space \(W^1(G) \). Let \(g \) be any positive function in \(K(G) \). Then \(W^1(G) \) consists of all continuous functions \(f \) on \(G \) which satisfy
\[|f(x)| \leq \sum_{n \in \mathbb{N}} a_n L_n g(x) \quad \text{for all } x \in G \]
for a suitable sequence \((y_n)_{n \in \mathbb{N}} \subseteq G \) and a sequence \(a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \) with \(\|a\|_1 = \sum |a_n| < \infty \). It is clear that
\[\|f\| = \inf \{ \|a\|_1, a = (a_n)_{n \in \mathbb{N}} \text{ satisfies } (*) \} \]
defines a norm on \(W^1(G) \). Moreover it is not difficult to see that \(W^1(G) \) does not depend on \(g \); \(g \) can even be replaced by the characteristic function of any open, relatively compact subset of \(G \).

Theorem 2. \(W^1(G) \) is a pseudosymmetric Segal algebra on \(G \) which contains \(K(G) \) as a dense subspace and is continuously embedded into \(L^1 \cap C^0(G) \).

Proof. Routine computations show that \((W^1(G), \|\|) \) is a Banach space which is continuously embedded into \(L^1 \cap C^0(G) \) and contains \(K(G) \) as a dense subspace. In particular \(y \rightarrow L_y k \) and \(y \rightarrow R_y k \) is a continuous function from \(G \) to \(W^1(G) \) for all