INTERSECTIONS OF STEINER SYSTEMS $S(3,4,v)$ WITH $v = 5 \cdot 2^n$

Mario Gionfriddo (*)

Let $q_v = v(v-1)(v-2)/24$, $I_v = \{0,1,2,\ldots,q_v-14,q_v-12,q_v-8,q_v\}$ for $v \geq 8$, and $J(v) = \{k : \exists$ SQS(v), $(Q,q_1),(Q,q_2)$ such that $|q_1 \cap q_2| = k\}$. In this paper we show that $I_v - \{q_v-17\} \subseteq J(v)$, for all $v = 5 \cdot 2^n$, $n \geq 2$.

1. INTRODUCTION AND RESULTS

A Steiner quadruple system (SQS) is a pair (Q,q) where Q is a finite set and q is a collection of 4-subsets of Q (called blocks) such that every 3-subset of Q is contained in exactly one block of q. The number $|Q|$ is called the order of the SQS (Q,q). In 1960 H. Hanani [8] proved that the spectrum for Steiner quadruple systems consists of all positive integers $v \equiv 2$ or $4 \pmod{5}$. If (Q,q) is an SQS of order v (SQS(v)), then $|q| = v(v-1)(v-2)/24$. A partial quadruple system (PQS) is a pair (P,q) where P is a finite set and q is a collection of 4-subsets of P (called blocks) such that every 3-subset of P is contained in at most one block of q. Two partial quadruple systems (P,q_1) and (P,q_2) are said to be mutually balanced if any given triple of distinct elements of P is contained in a block of q_1 if and only if it is contained in a block of q_2. Two mutually balanced PQSs are said to be disjoint (DMB PQSs) if they have no block in common. If (P,q_1) and (P,q_2) are any two DMB PQSs then $|q_1| = |q_2|$. An SQS (R,r) is a sub-SQS (or a subsystem) of an SQS

(*) Lavoro eseguito con contributo finanziario del M.P.I. (40%), anno 1983.
(Q,q) if R⊆Q and r⊆q. If (R,r) is a subsystem of (Q,q), we will also say that (R,r) is embedded in (Q,q), and that (Q,q) contains (R,r).

Let \(q_v = v(v-1)(v-2)/24 \), \(I_v = \{0,1,2,3,\ldots,q_v-14,q_v-12,q_v-10,q_v-8,q_v\} \) for \(v \geq 8 \), and \(J(v) = \{k : \text{SQS}(v) (Q, q_1), (Q, q_2) \text{ such that } |q_1 \cap q_2| = k\} \). The following question "For a given \(v \equiv 2 \text{ or } 4 \pmod{6} \), for which \(k \leq q_v \) is it possible to construct a pair of SQS(v) having exactly \(k \) blocks in common?" is examined in [4], [5], [6], [7].

Collecting together the results of these papers we have:

Case \(v = 2^n \)
1) \(J(4) = \{1\}, \ J(8) = \{0,2,6,14\} = I_8 \);
2) \(I_v - \{q_v-17\} \subseteq J(v) \), for all \(v = 2^n, n \geq 5 \); \(I_{16} - \{q_{16}-17, q_{16}-18, q_{16}-19\} \subseteq J(16) \);

Case \(v = 5 \cdot 2^n \)
3) \(I_v - \{q_v-h : h=17,21,25\} \subseteq J(v) \), for all \(v = 5 \cdot 2^n, n \geq 3 \);
\(I_{20} - \{q_{20}-h : h=15,17,21,23,25,29,31,39\} \subseteq J(20) \);

and in general
4) \(J(v) \subseteq I_v \), for all \(v \equiv 2 \text{ or } 4 \pmod{6}, v \geq 8 \).

In [9] E.S. Kramer and D.M. Mesner showed that \(J(10) = \{0,2,4,6,8,12,14,30\} \).

The object of this paper is the examination of the block intersection problem for SQS\(s \) having orders \(v = 2^n.5, n \geq 2 \). In particular, we show that:

\(I_v - \{q_v-17\} \subseteq J(v) \), for all \(v = 5 \cdot 2^n, n \geq 2 \).

It is evident the analogy between this result and the results 2). Since the author conjectures that \(q_{16}-18 \) and \(q_{16}-19 \) belong to \(J(16) \) (but this result has not as yet been proved), he thinks that collecting together cases \(v = 2^n \) and \(v = 5 \cdot 2^n \) would give the following result:

\(I_v - \{q_v-17\} \subseteq J(v) \subseteq I_v \).